Непереводимое слово «супергетеродин»
Для того чтобы перевести слово «супергетеродин» на русский язык, нужно совершить небольшую экскурсию в историю радиотехники. Первые ламповые приемники строились только по схеме прямого усиления. Затем с модернизацией этой схемы появился принципиально новый метод приема радиотелеграфных сигналов — метод гетеродинного приема. Такое название он получил потому, что в приемнике использовался гетеродин — собственный вспомогательный генератор токов высокой частоты, проще говоря, собственный передатчик небольшой мощности (тысячные доли ватта). В 1918 году на основе того же метода был создан принципиально новый приемник, который и был назван супергетеродином, то есть сверхгетеродин. Это, по-видимому, должно было означать, что новый приемник намного лучше гетеродинного.
Главную особенность супергетеродина можно определить так: какую бы станцию ни принимал этот замечательный приемник, он всегда усиливает и детектирует сигнал только одной частоты. Конечно, это звучит странно, так как частоты у всех станций разные. Как же можно принимать сигналы разных частот и в то же время усиливать сигналы только одной частоты? Неужели все переменные токи, которые наводятся в антенне приемника, «стригут под одну гребенку» по стандартному образцу и у всех у них частота становится одинаковой?
Да, именно так. Теперь вас, наверное, интересует, что дает такая стандартизация и как она практически осуществляется.
Прежде чем говорить об этом, нам придется сделать три шага назад, вспомнить три важных положения, о которых уже шла речь раньше.
Первое. Еще в начале книги упоминалось, что ток сложной формы можно представить в виде суммы гармонических (синусоидальных) составляющих определенных частот. Теперь мы знаем, что в случае необходимости можно выделить ту или иную составляющую с помощью колебательного контура.
Второе. Когда шла речь о модуляции, было отмечено, что наряду с основной, несущей частотой передатчик излучает еще и две боковые — верхнюю и нижнюю (рис. 29). Так, например, если несущая частота 200 кгц модулируется низкой частотой 10 кгц, то неизбежным и, кстати говоря, главным продуктом модуляции будут суммарная (верхняя) частота 210 кгц и разностная (нижняя) 190 кгц. Это не просто теоретический прием — с помощью колебательных контуров из модулированного сигнала можно выделить все три высокочастотные составляющие — 190, 200 и 210 кгц.
Третье. Мы уже говорили, что новые составляющие в каком-либо сигнале появляются лишь в том случае, когда этот сигнал подвергается нелинейным искажениям, когда определенным образом меняется форма его кривой. Если высокую и низкую частоту из предыдущего примера мы пропустим через обычное сопротивление, то никаких новых составляющих, никаких боковых частот не получим. На выходе сопротивления будет то же самое, что и на входе, те же 200 и те же 10 кгц.
Другое дело, если вместо сопротивления поставить «нелинейный элемент», например, полупроводниковый диод или лампу, способную изменять форму сигнала. Только в этом случае, подвергаясь одновременному «искажению», оба сигнала помимо обычных гармоник совместными усилиями создадут две новые гибридные составляющие с суммарной и разностной частотой. Процесс этот идет независимо от соотношения основных частот — если вместо 10 кгц мы возьмем 150, то получим суммарную частоту 350 кгц и разностную 50 кгц.
После этих небольших отступлений переходим к принципу супергетеродинного приема. На рис. 57 вы видите предельно упрощенную схему, поясняющую главную идею работы супера.
Рис. 57
Лампа Л1 это гептод (рис. 40, г), из всех сеток которого для простоты показаны только две управляющие. На первую подается сигнал, точнее огромное количество сигналов из антенны, ко второй подводится переменное высокочастотное напряжение от вспомогательного генератора — гетеродина, с которым мы скоро познакомимся подробно. Предварительно заметим, что частоту гетеродина можно плавно изменять в широких пределах. Показанный на упрощенной схеме каскад называется преобразователем частоты.
Режим лампы Л1 специально подобран так, что она создает некоторые нелинейные искажения и в результате в анодном токе появляются составляющие, которых не было ни на одном из двух входов лампы. Среди новых составляющих будет целая серия гибридов — суммарных и разностных частот «гетеродинной породы». Гетеродин создаст такие «гибриды» для каждой станции, сигнал которой попадет на сетку лампы. На рисунке приведена таблица, где можно найти несколько числовых примеров, показывающих, чему будут равны суммарные и разностные частоты для разных станций. В первом примере частота гетеродина меньше, а во втором больше частоты принимаемого сигнала, однако суть дела от этого не меняется.
Интересны четыре последних примера, но прежде чем комментировать их, еще несколько слов о самой схеме. В анодную цепь преобразователя включен двухконтурный филыр L1C2, L2C3. Так же, как и в любом другом резонансном усилителе (рис. 56), этот фильтр выделит из всех составляющих анодного тока только ту, на частоту которой он настроен. Так, если контуры настроены на 100 кгц, то из всех составляющих, которые появятся при частоте гетеродина 500 кгц, в анодной цепи выделится только разностная частота, соответствующая принимаемому сигналу 400 кгц. Если изменить частоту гетеродина и сделать ее равной 510 кгц, то на смену этому сигналу уже придет другой — с частотой 410 кгц, так как теперь именно он совместно с гетеродином создаст разностную частоту 100 кгц, на которую настроен анодный двухконтурный фильтр. Одним словом, изменяя частоту гетеродина, можно будет выделить разностную частоту 100 кгц, полученную от любого сигнала действующего в антенне приемника.
Дети всегда чем-то похожи на родителей. Разностная частота, которую выделит анодный контур, оказывается промодулированной точно так же, как и участвовавший в ее создании сигнал принимаемой станции. Это значит, что если с двухконтурного фильтра высокочастотное напряжение разностной частоты мы подведем к детектору, то получим такой же низкочастотный ток, какой получили бы при детектировании основного сигнала.
На пути от преобразователя к детектору можно усилить сигнал разностной (обычно ее называют промежуточной) частоты и с помощью колебательных контуров тщательно отделить его от других составляющих.
Итак, главная идея супергетеродинного приема ясна — с помощью гетеродина и преобразователя мы прежде всего превращаем сигнал принимаемой станции в сигнал промежуточной (разностной) частоты и именно его усиливаем и детектируем. Это дает возможность довольно простыми средствами получить высокую чувствительность и избирательность на всех диапазонах. Во-первых, в усилителе промежуточной частоты (ПЧ) можно применить большое число контуров, так как они всегда настроены на одну и ту же частоту и конструктивно выполняются очень просто. Каждый такой контур — это катушка и конденсатор постоянной емкости — никаких переключателей и конденсаторов настройки, как в приемнике прямого усиления. Во-вторых, поскольку усиливаемая частота всегда одинакова, то «супер» обладает одинаковой чувствительностью и избирательностью на всех диапазонах.
И, наконец, если сделать промежуточную частоту не очень высокой, то контуры смогут легко ослаблять соседние станции (точнее, их разностные частоты), а электронные лампы будут избавлены от специфических трудностей, связанных с усилением очень высоких частот. В нашей стране для всех приемников установлена единая стандартная промежуточная частота 465 кгц, которая лежит в промежутке между диапазонами длинных и средних волн. На этой частоте усилитель НЧ работает примерно в таких же благоприятных условиях, как приемник прямого усиления в конце ДВ диапазона.
Из многих схем преобразовательных каскадов в наших приемниках наиболее широко применяются две. Одна из них выполнена на базе лампы 6И1П (рис. 58), вторая использует более старую лампу 6А7 (рис. 59).
Рис. 58
Рис. 59
Лампа 6И1П комбинированная — в ее баллоне имеется гептод, который работает в самом преобразователе частоты, и триод, на котором собран гетеродин. На полной и особенно на упрощенной схеме гетеродина (рис. 58, б) видно, что один из основных его элементов это колебательный контур L2C6.
Под действием первой же попавшей в контур порции энергии в нем начинаются собственные колебания, частота которых, как всегда, определяется индуктивностью и емкостью. Именно поэтому очень хотелось бы иметь контур в качестве источника вспомогательного высокочастотного напряжения — изменяя емкость и индуктивность, можно было бы легко менять вспомогательную частоту и таким образом перестраиваться с одной станции на другую (рис. 57, таблица). И в то же время сам контур без посторонней помощи не может участвовать в преобразовании частоты, поскольку колебания в нем затухают. Задача всех остальных элементов гетеродина и в первую очередь усилительной лампы в основном сводится к тому, чтобы сделать колебания в контуре незатухающими.
Катушка L3, включенная в анодную цепь лампы, расположена рядом с контурной катушкой L2 и связана с ней общим магнитным полем. Иными словами, обе эти катушки образуют высокочастотный трансформатор, с помощью которого энергия из анодной цепи передастся в сеточную, то есть осуществляется обратная связь. В отличие от того, что мы видели в усилителе низкой частоты, в гетеродине обратная связь положительна. Переменный ток, который катушка L3 — она называется катушкой обратной связи — наводит в контуре, действует согласно, в фазе с собственными колебаниями этого контура. Связь получается положительной благодаря определенному включению катушки; если поменять местами ее выводы, то связь станет отрицательной.
Известно, что собственные колебания в контуре затухают потому, что запасенная энергия постепенно расходуется на преодоление потерь. Теперь эти расходы восполняются за счет энергии, которая поступает в контур из анодной цепи и, при достаточно сильной положительной обратной связи потери в контуре будут полностью скомпенсированы — колебания станут незатухающими. Так ламповый генератор — гетеродин становится источником нужного нам переменного напряжения, частоту которого можно менять с помощью конденсатора и катушки. В гетеродине, так же как и во входном контуре, переход с диапазона на диапазон осуществляется переключением катушек, а плавная настройка в пределах диапазона с помощью конденсатора переменной емкости. Кстати говоря, на схемах преобразователей вы, по-видимому, узнаете и входной контур, L1С2, включенный в цепь антенны. О том, какую роль он играет в супергетеродине и почему конденсаторы С2 и С6 соединены пунктирной линией, вы узнаете в конце главы.
Схема генератора, примененная во втором преобразователе частоты (рис. 59), называется трехточечной. Здесь катушки обратной связи нет вообще и сама лампа подключена к контуру всеми тремя своими электродами (рис. 60).
Рис. 60
Благодаря этому контур получает энергию из анодной цепи и часть ее передает обратно на сетку. Для того чтобы в трехточечной схеме обратная связь была положительной, сетку и анод нужно подключить к краям контура, а катод — к середине. В нашей схеме (рис. 60, в) это требование выполнено, но весьма оригинальным путем.
Для постоянного тока, как обычно, заземлен катод через часть контурной катушки, сопротивление которой для постоянного тока практически равно нулю. В то же время для переменного тока катод нельзя считать заземленным, так как на высокой частоте индуктивным сопротивлением катушки уже никак пренебрегать нельзя. Для переменного тока заземлен анод — он замкнут на корпус через конденсатор С1 достаточно большой емкости, а поскольку с корпусом соединен и нижний (по схеме) «край» контура, то можно считать, что главное требование (катод в центре, анод и сетка по краям) выполняется полностью.
Для чего понадобились все эти хитрости? Почему нельзя было просто, как обычно, заземлить катод?
Этот схемный фокус нужен был для того, чтобы отыскать для гетеродина триод там, где, по сути говоря, его нет.
Сравнивая обе схемы преобразователей, вы, очевидно, обратите внимание на то, что в лампе 6А7 действительно нет триодной части. Эта лампа разрабатывалась в расчете на отдельный, то есть собранный совсем на другой лампе гетеродин, но затем оказалось возможным обойтись и без нее, используя местные ресурсы. Отдельная управляющая сетка для гетеродина в лампе 6А7 есть, катод без всяких разговоров взялся за дополнительную работу, ну а обязанности анода по совместительству приняла на себя экранная сетка. Правда, здесь пришлось пойти на некоторые уступки экранной сетке. Поскольку для выполнения своих основных обязанностей она должна быть заземлена через конденсатор (рис. 41), то гетеродин пришлось собрать по схеме с заземленным (через С7) для переменного тока анодом. В то же время для постоянного тока экранную сетку заземлить нельзя — на нее подается положительное напряжение от общего выпрямителя.
Несколько слов о величине, или, как обычно говорят, о глубине обратной связи. Здесь «недосолить» так же опасно, как «пересолить» — если связь будет недостаточно сильной, потери в контуре будут скомпенсированы не полностью и колебания постепенно затухнут. При слишком сильной связи амплитуда колебаний будет непрерывно нарастать.
Вопреки известной пословице, мы выбираем «пересол» — делаем обратную связь сильней, чем нужно. В то же время в действие вводится «малая автоматизация» — сопротивление R2, которое сумеет поддерживать напряжение на контуре «в пределах нормы». Дело в том, что по этому сопротивлению проходит сеточный ток и создает на нем напряжение отрицательного смещения (рис. 39, в). Когда напряжение на контуре растет, увеличивается и сеточный ток, а вместе с ним и отрицательное смещение. При этом анодный ток уменьшается и из анодной цепи б контур попадает меньше энергии. Подобрав определенным образом степень связи между катушками, а также данные цепочки, можно добиться того, что высокочастотное напряжение на контуре не будет выходить из пределов 5—15 в, что как раз и требуется для нормальной работы преобразователя.
В супергетеродине вслед за преобразователем частоты должен идти усилитель ПЧ, а затем детектор. Типичная и несколько упрощенная схема этого участка показана на рис. 61.
Рис. 61
Первый двухконтурный фильтр L1C1, L2C2 связывает анодную цепь преобразователя и сеточную цепь самого усилителя ПЧ, который, как всегда, собран на высокочастотном пентоде (Л2). Второй двухконтурный фильтр L3C3, L4C4 связывает анодную цепь усилителя ПЧ с детектором. В остальном схема, по-видимому, не требует пояснений, если не считать не знакомую нам еще систему автоматической регулировки усиления.
Когда вы вращаете ручку настройки приемника, то все станции слышите примерно с одинаковой громкостью. Примерно — это значит, что мощная станция может быть в несколько раз громче слабой или очень далекой. Если бы в приемнике не было автоматической регулировки громкости (АРГ) или, как ее чаще называют, автоматической регулировки усиления (АРУ), то вместо слов «в несколько» мы должны были бы написать «в несколько тысяч» — уровни сигналов, действующих в антенне, различаются чрезвычайно резко. Сами понимаете, что такие скачки сильно затруднили бы пользование приемником — одновременно с поиском станции пришлось бы непрерывно крутить ручку регулятора громкости. Кроме того, очень заметными стали бы «замирания» на коротких и на средних волнах, где уровень сигнала все время меняется из-за сложных процессов в отражающих слоях ионосферы.
От этих неприятностей в значительной степени и спасает система АРУ. Она следит за уровнем принимаемого сигнала и по мере его роста автоматически снижает усиление высокочастотного тракта приемника. Для этой ответственной операции используются «отходы производства» — постоянная составляющая тока, получаемая при детектировании (рис. 61).
Из схемы ясно, что чем сильнее принимаемый сигнал, тем больше постоянная составляющая пульсирующего тока, которая проходит по сопротивлениям R4, R5, тем, следовательно, больше и постоянное напряжение на них. Это напряжение «минусом» подается на сетки высокочастотных ламп Л1 и Л2. Гептоды, так же как обозначаемый буквой К пентоды (стр. 128), имеют характеристику с переменной крутизной — чем больше «минус» на управляющей сетке такой лампы, тем меньше она усиливает сигнал.
В системе АРУ источником смешения для высокочастотных ламп служит постоянное напряжение на нагрузке детектора. Чем сильней сигнал, тем больше отрицательное смещение, тем меньше усиление сигнала. Это и есть автоматическая регулировка усиления, а значит, и громкости. Фильтр R6С10 в цепи АРУ предохраняет высокочастотные лампы от действующего в детекторе напряжения НЧ.
В основных чертах портрет супергетеродина нами нарисован. Познакомились мы с главными достоинствами приемника, в основе которых лежит постоянство усиливаемой частоты.
Однако справедливость требует, чтобы были отмечены и недостатки супера, а поэтому мы вернемся на судебный процесс, происходящий в Электронии, и дослушаем речь адвоката, который как раз собрался доказать суду, что супергетеродин «не без греха».
«Взгляните на таблицу, иллюстрирующую принцип действия супера, — продолжает свою речь адвокат, протягивая судье копию таблицы, которую вы видели на рисунке 57. — Мне хотелось бы обратить ваше внимание на то, что в первых двух примерах получаются одинаковые разностные частоты при одной и той же частоте гетеродина, но при разных, я еще раз подчеркиваю, при разных сигналах. Это значит, что если контуры промежуточной частоты будут настроены на 200 кгц и гетеродин будет давать переменное напряжение с частотой 500 кгц, то мы одновременно услышим две станции, работающие на частотах 700 и 300 кгц. Вы только не подумайте, что это случайное совпадение — сама природа супера такова, что он всегда, при любой промежуточной частоте и при любой частоте гетеродина одновременно принимает две станции — частота одной из них выше гетеродинной, частота другой ниже.
Никто из граждан Электронии одновременно двух станции не слушает — нам нужна одна и только одна программа. Вторая станция является помехой, которую так и хочется назвать зеркальной, так как для усилителя ПЧ она является точной и неотличимой копией основной, принимаемой, станции. И как бы ни подчеркивал супер свои огромные возможности, избавиться от зеркальной помехи он не может. Если кто-нибудь думает, что это не так, то пусть объяснит суду, каким образом контуры усилителя ПЧ смогут узнать, когда промежуточная частота (в нашем примере 200 кгц) относится к нужной станции, а когда — к ненужной.
Супергетеродин подвержен еще одной неизлечимой болезни — в него может беспрепятственно пробраться любой сигнал, частота которого равна промежуточной. Для этой частоты на всех путях супера открыт «зеленый свет» — на нее настроены все контуры. Попав на сетку первой лампы, любой сигнал, частота которого равна промежуточной, с триумфом проходит до самого детектора без всякой помощи гетеродина. Проще говоря, супер, который на каждом шагу подчеркивает недостатки моего истца, сам представляет собой приемник прямого усиления с заранее настроенными контурами для сигналов промежуточной частоты.
Я вижу, как уважаемый Ответственный представитель супергетеродина делает в своем блокноте пометки. Он, очевидно, хочет возразить, что на промежуточной частоте не работает ни одна радиостанция и что поэтому нечего, мол, опасаться каких-либо мешающих сигналов, которые могут воспользоваться секретным паролем и пролезть в приемник без ведома гетеродина. Ну что ж, это на самом деле так — частота 465 кгц и прилегающие к ней частоты действительно свободны от радиостанций. Но кто же, позвольте спросить, запретит работать на этой частоте грозовым разрядам, искрящим переключателям, коллекторным двигателям и всем остальным источникам помех? Ведь любая помеха практически содержит в своем спектре составляющие, у которых частота равна промежуточной или соседствует с ней. И все эти составляющие беспрепятственно проникают в супер и вызывают потоки тресков и свистов. Тщательно взвесив все за и против, я хотел бы просить уважаемый суд Электронии…»
* * *
КОМНАТА — КОНЦЕРТНЫЙ ЗАЛ
Чтобы поставить какому-нибудь приемнику оценку «хороший» или «плохой», нужно прежде всего оценить качество его звучания, верность, естественность воспроизведения звука. В последнее время «высокой верности» уделяется особое внимание. Создаются сложные акустические агрегаты из нескольких громкоговорителей, эффективные схемы регулировки тембра, усилители с глубокой отрицательной обратной связью и большим запасом выходной мощности. Для того чтобы получить эффект «объемного звука», громкоговорители располагают не только на передней, но и на боковых стенках ящика, применяют дополнительные выносные громкоговорители.
И все же достаточно высокое качество звучания получить нетрудно, когда ведется прием на длинных, средних или коротких волнах. Это особенно чувствуется, когда вы переходите на ультракороткие волны. Передачи на УКВ создают у вас полное впечатление, что вы попали в прекрасный концертный зал и исполнители находятся где-то совсем рядом.
Радиовещательные УКВ-передатчики работают не с амплитудной, а с частотной модуляцией — сокращенно ЧМ. Само название говорит о том, что в процессе ЧМ под действием звука изменяется не амплитуда, а частота тока в передающей антенне. Радиоволны наводят в антенне приемника такой же модулированный по частоте сигнал, который детектируется с помощью специального частотного детектора. Естественно, что в такой системе можно, не опасаясь искажении, ограничить амплитуду и таким образом «срезать» все помехи, которые «налипли» на полезный сигнал. К тому же уровень помех в диапазоне УКВ намного меньше, чем на всех остальных. Одним словом, передачи УКВ радиостанции слышны в полной «тишине», без помех. Радиовещательный УКВ ЧМ-передатчик занимает полосу частот 200 кгц, а расстояние между несущими составляет 250 кгц. При этом удается передать очень широкий спектр низких частот, практически до 15 000 гц вместо 5–8 кгц, которыми приходится довольствоваться на других диапазонах.
Ввести УКВ-диапазон в приемник не так-то просто. Для этого нужен отдельный преобразователь частоты, частотный детектор и усилитель ПЧ с широкой полосой пропускания. Правда, речь последнего успешно выполняет основной усилитель ПЧ, в который включают дополнительные полосовые фильтры, настроенные на промежуточную частоту 8,2 Мгц. В самое последнее время УКВ-диапазон вводится не только в радиоприемники высокого класса, но и в самые простые и дешевые приемники.
* * *
Но здесь мы опять прервем защитника «прямика» и на этот раз уже навсегда. Мы знаем, о чем он просит, и также знаем, что просьба эта не имеет серьезных оснований — достоинства супергетеродина настолько очевидны, что он остается вне конкуренции, во всяком случае там, где решается вопрос о радиовещательном приемнике. Что же касается названных недостатков супера, то они действительно существуют, но здесь адвокат «прямика», как говорится, сгустил краски, и поэтому картина получилась неточной. В действительности, и с зеркальной помехой и с помехами, частота которых равна промежуточной, в супергетеродине ведется успешная борьба.
На обеих схемах преобразовательных каскадов вы видите уже знакомый входной контур (L1С2). Конечно, для ослабления соседних станций он в супере не нужен — с этой задачей отлично справляется дружный коллектив контуров промежуточной частоты. Но зато в борьбе с зеркальными помехами входной контур является отличным лекарством, точнее профилактической «противозеркальной» вакциной. Конечно, после преобразователя контуры ПЧ не могут отличить нужный сигнал от зеркальной помехи — в этом отношении адвокат был прав. Но почему он хочет уговорить нас, что борьбу с «зеркалкой» можно вести только после преобразователя? Ведь на входе приемника основной сигнал и будущая зеркальная помеха имеют разные частоты, и там их можно разделить.
Именно эту задачу и выполняет входной контур — он настроен на частоту принимаемой станции, поэтому во много раз ослабляет мешающий сигнал. При этом входной контур супергетеродина работает в несравненно более выгодных условиях, чем в приемнике прямого усиления. Ведь там нужно ослабить соседнюю станцию, частота которой отличается от принимаемой всего на 10 кгц. В супере входной контур должен ослаблять зеркальную помеху, которая при стандартной промежуточной частоте (465 кгц) отстоит от принимаемой станции на 930 кгц. В некоторых приемниках, обычно высокого класса, для того чтобы совсем «задавить» зеркальную помеху, до преобразователя ставят два контура. В таких приемниках, как правило, имеется собранный на пентоде усилитель высокой частоты, в сеточную цепь которого и включается настраивающийся колебательный контур. Второй контур обычно включен в сеточную цепь лампы преобразователя.
Даже один входной контур, не говоря уже о двух, заметно усложняет систему настройки супергетеродина. Теперь для того, чтобы перестраиваться с одной станции на другую, нужно изменять не только частоту гетеродина, но и резонансную частоту входного контура. Таким образом, даже в самом простом супере имеются как минимум два настраивающихся контура — входной и гетеродинный, и поэтому должно быть два комплекта переключаемых катушек и сдвоенный блок конденсаторов переменной емкости. Для того чтобы настройка входных и гетеродинных контуров всегда была согласованной (принято говорить «сопряженной»), в контур гетеродина включают специальный сопрягающий конденсатор (С5, рис. 58, 59), емкость которого на каждом диапазоне различна. Для точного сопряжения контуров имеются элементы подстройки — сердечники в катушках и подстроечные конденсаторы.
Значительно проще удается подавить помеху, частота которого равна промежуточной, — для этого в антенную цепь просто включают контур, настроенный на эту частоту. Существует несколько таких контуров — фильтров. Один из них (рис. 62, а) — это последовательный контур L2С2, который на резонансной частоте обладает очень маленьким сопротивлением и таким образом замыкает помеху накоротко с антенны на «землю». Второй фильтр называют «пробкой» — (рис. 62, б, в). Он представляет собой параллельный контур, который в отличие от последовательного обладает очень большим сопротивлением на резонансной частоте. Такой контур просто преграждает путь помехе во входную цепь приемника.
Рис. 62
Все контуры супера — входные, гетеродинные, контуры ПЧ, антенные фильтры — тщательно настроены на заводе и настройка эта, как правило, не нарушается. Правда, иногда, особенно во время неаккуратной перевозки, может сдвинуться с места какой-нибудь сердечник, и это сразу же вызывает заметное ухудшение чувствительности и избирательности. Точно настроить контуры может только опытный специалист, и нужен для этого специальный генератор сигналов, хотя можно удовлетворительно осуществить настройку и без приборов.
Мы с вами рассмотрели все основные узлы супергетеродина. Теперь неплохо было бы посмотреть, как они выглядят в настоящем радиоприемнике. Давайте попробуем разобрать схему какого-нибудь не очень сложного приемника или радиолы, ну, скажем, приведенную в конце книги схему широко распространенной радиолы «Рекорд-61».