Глава 3
КОЛЕБАТЕЛЬНЫЙ КОНТУР
Как уже отмечалось, у простейшего детекторного приемника, описанного в предыдущей главе, имеются серьезные недостатки. Во-первых, у него очень плохая чувствительность. Это значит, что простейший приемник принимает только сильные сигналы. Во-вторых, простейший приемник практически не обладает никакой избирательностью, то есть не позволяет выделить сигнал нужной нам станции среди других сигналов, действующих в приемной антенне. Это значит, что если к приемной антенне придет несколько достаточно сильных сигналов от разных радиостанций, то передачи всех этих станций будут слышны одновременно.
Первое, что можно сделать для борьбы с такими недостатками, это ввести в приемник колебательный контур — устройство, которое может повысить высокочастотное напряжение, подводимое к детектору. Но основное достоинство колебательного контура состоит не только в том, что он увеличивает слабые напряжения высокой частоты, а в том, что напряжение какой-то определенной частоты он повышает больше всех других. Тем самым колебательный контур как бы выбирает из множества высокочастотных сигналов один сигнал, принадлежащий определенной радиопередающей станции. Это замечательное свойство контура называется избирательностью. Оно связано с происходящими в нем электромагнитными колебаниями (отсюда название «колебательный контур»).
Прежде чем знакомиться с электромагнитными колебаниями в контуре, вспомним о хорошо известных нам механических колебаниях — колебаниях маятника, гитарной струны, качелей, стальной линейки, зажатой в тисках, и т. п. Хотя в основе электромагнитных и механических колебаний лежат совершенно различные физические явления, но законы, по которым протекают эти колебания, очень похожи. Вот почему знакомство с механическими колебаниями поможет нам при изучении колебаний электромагнитных.
КОЛЕБАНИЯ МЕХАНИЧЕСКИЕ…
Футболист сильно ударил по мячу, и он «свечой», то есть почти вертикально, пошел вверх (рис. 37).
Рис. 37. Мяч поднимается вверх, и его кинетическая энергия (энергия движущегося тела) переходит в потенциальную (энергия, запасенная телом, поднятым на высоту).
Поднявшись на довольно большую высоту, мяч на секунду «замер», а затем, постепенно набирая скорость, стал падать вниз (рис. 38).
Рис. 38. Когда мяч падает, его потенциальная энергия вновь переходит в кинетическую.
Тот, кто знаком с физикой, знает, что, пока мяч поднимался и опускался, произошло два превращения энергии. При движении мяча вверх его кинетическая энергия (энергия движущегося тела; поднимаясь, мяч замедляет движение, и его кинетическая энергия уменьшается) перешла в энергию потенциальную (энергия, запасенная телом, поднятым на высоту; чем выше поднимается мяч, тем больше его потенциальная энергия), а затем по мере падения мяча его потенциальная энергия перешла в кинетическую.
Интересные взаимные превращения кинетической и потенциальной энергии можно наблюдать и в качающемся маятнике.
Когда грузик маятника находится в одном из крайних положений, его потенциальная энергия максимальна. По мере того как грузик опускается, его потенциальная энергия уменьшается, а кинетическая растет за счет увеличения скорости движения. Одним словом, при движении маятника к средней точке его потенциальная энергия переходит в кинетическую, и при прохождении средней точки потенциальная энергия маятника равна нулю, а кинетическая максимальна. Когда, проскочив по инерции среднюю точку, маятник двигается вверх, его кинетическая энергия постепенно переходит в потенциальную. Благодаря непрерывному переходу потенциальной энергии в кинетическую, а кинетической в потенциальную маятник совершает колебания — периодически отклоняется то в одну, то в другую сторону от своего среднего положения (рис. 39).
Рис. 39. В процессе колебаний маятника непрерывно происходит переход одного вида энергии в другой — потенциальная энергия (энергия поднятого маятника) периодически переходит в кинетическую (энергию движущегося маятника), кинетическая — обратно в потенциальную и т. д. При этом с определенной частотой меняется скорость движения маятника и его отклонение.
Аналогичными процессами сопровождаются и другие виды механических колебаний (лист 64).
Попробуем записать все, что происходит с маятником в процессе его колебаний. Такую запись удобнее всего произвести с помощью особого рисунка — графика (рис. 40). Мы уже встречались с графиками в предыдущей главе.
Рис. 40. График — это очень удобный и наглядный способ записи зависимости одной величины от другой и, в частности, зависимости какой-либо величины от времени.
Основой графика являются две взаимно-перпендикулярные прямые линии, называемые осями. По горизонтальной оси мы будем в определенном масштабе отмечать время, для чего разметим эту линию-ось в единицах времени, подобно циферблату секундомера (рис. 40). По вертикальной оси, также в определенном масштабе, будем отмечать отклонение маятника от его среднего положения, и эту ось разметим в единицах длины.
Теперь будем через определенные промежутки времени (например, через каждую секунду) измерять отклонение маятника и делать соответствующие отметки-точки. При отклонении маятника вправо будем делать отметки вверх от нулевой точки, а при отклонении влево — вниз от этой точки. Такой выбор сделан совершенно условно: можно было бы принять и обратное направление. По отметкам-точкам, которые мы будем наносить па графике, можно будет построить кривую (так обычно называют линию, соединяющую отдельные точки графика), которая и расскажет о том, как перемещается маятник с течением времени. Из графика, например, можно увидеть, что колебания маятника постепенно ослабевают («затухают») — амплитуда отклонений становится все меньше и меньше (рис. 48), уменьшается и амплитудная (максимальная) скорость движения грузика. Колебания затухают потому, что энергия, запасенная при первом толчке, постепенно расходуется на преодоление сопротивления воздуха на трение в подшипнике или изгиб нити. Чем меньше эти потери энергии, тем медленнее затухают колебания.
Время, в течение которого маятник совершает полный цикл колебаний, называется периодом и обычно, подобно периоду переменного тока, обозначается буквой Т. Зная период, легко подсчитать частоту колебаний f и, наоборот, зная f, подсчитать Т:
Так, например, если Т = 8 сек, то f = 0,125 гц, если колебания имеют частоту 100 гц, то период равен 0,01 сек (лист 65). Частота колебаний маятника, так же как и частота любых колебаний, зависит от того, насколько быстро в процессе этих колебаний энергия переходит из одного видав другой (в данном случае потенциальная энергия в кинетическую и обратно).
Лучше всего проследить указанную зависимость на примере колебаний гитарной струны. Эти колебания — результат перехода потенциальной энергии натянутой струны (когда струна натянута, то внутренние силы упругости стремятся вернуть ее в среднее положение) в кинетическую энергию движущейся струны и обратно.
Частота колебаний струны зависит от ее массы: чем толще струна, тем больше ее инерция, тем медленнее она накапливает и отдает кинетическую энергию, тем, следовательно, меньше частота колебаний. Частота колебаний зависит и от упругости струны, то есть практически от се натяжения: чем сильнее натянута струна (чем больше ее упругость), тем быстрее она отдает и накапливает потенциальную энергию, тем выше частота колебаний.
…И ЭЛЕКТРОМАГНИТНЫЕ
Электромагнитные колебания, так же как и любые другие колебания, — это результат периодического перехода энергии из одного вида в другой, а конкретно — результат перехода энергии электрического поля в энергию магнитного поля и наоборот.
Для накопления этих видов энергии могут использоваться специальные устройства: для накопления энергии электрического поля — конденсатор, а для накопления энергии магнитного поля — катушка индуктивности (иногда ее называют катушкой самоиндукции или просто катушкой). Электрическая цепь, состоящая из конденсатора и катушки, и представляет собой контур, в котором могут происходить электромагнитные колебания.
Мы уже знаем, что вокруг проводника, но которому течет ток, возникает магнитное поле. Если же разместить рядом несколько таких проводников, то мы получим более сильное магнитное поле, так как магнитные поля отдельных проводников суммируются (рис. 41).
Рис. 41. В магнитном поле, окружающем проводник с током, запасается энергия. Разместив рядом несколько проводников, можно усилить магнитное поле, а значит, и запасы энергии.
Есть и другой путь для усиления магнитного поля — можно свернуть проводник в спираль, то есть намотать из него катушку. В этом случае суммируются магнитные поля отдельных витков. Чем больше витков в катушке и чем ближе они друг к другу расположены, тем сильнее результирующее магнитное поле. Наиболее сильное поле образуется внутри катушки (рис. 42).
Рис. 42. Чтобы усилить магнитное поле, проводник можно свить в спираль и изготовить катушку. Чем больше витков в катушке (чем больше индуктивность), тем больше энергии накапливается в ее магнитном поле при прохождении тока.
Способность катушки создавать магнитное поле характеризуется ее индуктивностью. Индуктивность обозначается буквой L, и этой же буквой обозначаются катушки на схемах радиоаппаратуры. Единицей индуктивности является генри (гн). Имеются более мелкие единицы: миллигенри (мгн) — одна тысячная доля генри и микрогенри (мкгн) — одна миллионная генри (лист 66). Генри — это очень большая величина — катушка с такой индуктивностью содержит несколько десятков тысяч витков. В колебательных контурах наиболее часто встречаются катушки с индуктивностью от долей мкгн до нескольких мгн. Можно в десятки и сотни раз увеличить индуктивность L катушки, если вставить в нее стальной стержень, обычно называемый сердечником (рис. 43).
Рис. 43. Можно резко увеличить индуктивность катушки, вставив в нее стальной сердечник. Сердечник сам намагничивается и усиливает общее магнитное поле.
Увеличение индуктивности в этом случае объясняется тем, что под действием магнитного поля катушки сердечник намагничивается и создает свое собственное поле, которое усиливает поле самой катушки. Резко увеличивает индуктивность катушки не только сталь, но и ряд других материалов, получивших общее название ферромагнитных (от латинского слова «феррум» — железо). Чем больше ферромагнитный сердечник и чем сильнее он охватывается магнитным полем катушки, тем больше ее индуктивность. С катушками различных типов, применяемыми в приемниках, мы еще встретимся в дальнейшем.
На образование магнитного поля катушки затрачивается энергия движущихся зарядов (тока), то есть, в конечном итоге, энергия батареи. Если отключить батарею, то ток в катушке сразу не прекратится: исчезая, магнитное поле будет отдавать свои запасы энергии движущимся зарядам, поддерживая некоторое время ток в цепи. Чем больше индуктивность L катушки, тем больше энергии накопится в ее магнитном поле, тем, следовательно, дольше будет существовать ток в цепи после отключения батареи. При неизменной индуктивности магнитное поле катушки будет тем сильней, а запасенная в нем энергия будет тем больше, чем сильнее ток, проходящий по этой катушке.
Следует отметить, что катушки часто помещают в металлический (чаще всего алюминиевый) экран — чехол прямоугольной или цилиндрической формы (лист 67). Делают это для того, чтобы на катушку не влияли внешние магнитные и электрические поля или, наоборот, для того, чтобы магнитное поле катушки не влияло на другие цепи. Экран несколько изменяет индуктивность катушки.
Теперь несколько слов о конденсаторе.
Простейший конденсатор (лист 68) представляет собой две металлические пластинки (обкладки), между которыми находится слой изолятора (воздух, бумага, слюда, керамика и т. п.).
Если подключить конденсатор к источнику тока, например к батарее, то он зарядится: на обкладках соберутся электрические заряды (рис. 44) и вокруг этих обкладок (и особенно между ними) появится электрическое поле.
Рис. 44. При подключении конденсатора к батарейке (заряд конденсатора) на его обкладках накапливаются заряды, а между обкладками появляется электрическое поле, то есть конденсатор запасает энергию.
При зарядке конденсатора на той обкладке, которая подключена к «минусу» батареи, появится избыток электронов (обкладка с отрицательным зарядом), а на другой обкладке во многих атомах будет наблюдаться нехватка электронов (обкладка с положительным зарядом). Заряды на обкладках, а следовательно, и электрическое поле конденсатора останутся и после того, как мы отключим батарею, так как через слой изолятора заряды не смогут перейти с одной обкладки на другую. Конденсатор отдаст запасенную им энергию лишь в том случае, если его разрядить — соединить обкладки проводником, по которому полученные от батареи «лишние» электроны смогут перейти на противоположную обкладку и занять имеющиеся там «свободные места» (рис. 45).
Рис. 45. При подключении к заряженному конденсатору нагрузки (разряд конденсатора) он отдает запасенную энергию — избыточные заряды уходят с обкладок, а в цепи в этот момент появляется ток.
Необходимо отметить, что идеальных изоляторов не существует и всякий изолятор хоть плохо, но все же проводит электрический ток. Поэтому если даже не соединять проводником обкладки конденсатора, то он все равно постепенно разрядится, со временем заряды перейдут с одной обкладки на другую через изолятор и окружающий воздух. Конденсатор как накопитель электрической энергии используется в так называемых лампах-вспышках, применяемых в фотографии. Конденсатор сравнительно долго — несколько секунд — накапливает энергию от батареи, а затем очень быстро, в течение сотых долей секунды, выдает эту энергию специальной осветительной лампе. Но при заряде и при разряде конденсатора электрический ток выполняет одну и ту же работу, а за счет быстроты разряда лампа развивает большую мощность и дает яркую вспышку. Вспомните, что мощность это и есть работа, отнесенная к единице времени.
Принципиально можно было бы построить лампу-вспышку не с конденсатором, а с катушкой, которая накапливала бы энергию в магнитном поле. Однако такая установка будет очень громоздкой и неудобной.
Способность конденсатора накапливать заряды, а следовательно, и накапливать энергию в виде электрического поля характеризуется емкостью этого конденсатора. Емкость обозначается буквой С — этой же буквой на схемах обозначаются сами конденсаторы. Единицей емкости является фарада (ф). Имеются и более мелкие единицы: микрофарада (мкф) — миллионная доля фарады и пикофарада (пф) — миллионная доля микрофарады (лист 69). Пикофараду иногда называют микромикрофарадой (мкмкф). Фарада — это чрезвычайно большая величина, и конденсаторы такой емкости в практике никогда не встречаются. Обычно в радиоаппаратуре используются конденсаторы емкостью от нескольких пикофарад до нескольких десятков, реже — сотен микрофарад.
Емкость конденсаторов на схемах указывается сокращенно (лист 70). Если емкость конденсатора составляет доли пикофарады, то она выражается десятичной дробью с прибавлением букв «пф» (например, 0,5 пф). Целое число пикофарад, не более тысячи, выражается обычным числом без каких-либо добавлений (например, цифра 500 соответствует емкости 500 пф). Если емкость превышает 1000 пф, то она уже выражается в микрофарадах в виде десятичной дроби. Например, обозначение 0,002 соответствует емкости 0,002 мкф или, что то же самое, 2000 пф.
Десятичной дробью выражается и емкость конденсаторов более одной микрофарады. Так, например, обозначение 20,0 соответствует емкости 20 мкф.
Наряду с емкостью важной характеристикой конденсатора является его рабочее напряжение, то есть напряжение, которое можно без опасений прикладывать к его обкладкам. Если к конденсатору приложить напряжение больше, чем это разрешается, то может произойти пробой (разрушение) изолятора и как следствие этого короткое замыкание между обкладками.
Величина рабочего напряжения обычно указывается на корпусе конденсатора одновременно с его емкостью.
Емкость конденсатора зависит от площади его обкладок и расстояния между ними: чем больше эта площадь и чем ближе друг к другу расположены обкладки, тем больше С. У конденсаторов малой емкости обкладки обычно выполняют в виде прямоугольных пластин или дисков, а также в виде двух трубок, расположенных одна внутри другой. У конденсаторов большой емкости обкладки представляют собой длинные ленты из тончайшего металла (фольги), которые вместе с изолирующей прокладкой свернуты в трубку и размещены в корпусе из керамики или металла.
Емкость конденсатора сильно зависит от примененного в нем изолятора. По сравнению с воздухом бумага дает увеличение емкости в три-четыре раза, слюда в пять — восемь раз, а некоторые сорта керамики — в несколько тысяч раз.
Материал диэлектрика и конструктивные особенности конденсатора сокращенно отражаются в его названии (листы 71, 72).
Так, например, если обкладки конденсатора представляют собой трубки, вставленные одна в другую, а между ними находится слой керамики, то такой конденсатор называется КТК — конденсатор трубчатый керамический. Аналогично КДК означает: конденсатор дисковый керамический, КСО — конденсатор слюдяной опрессованный (в пластмассу). Перечисленные конденсаторы обычно имеют емкость от нескольких пикофарад до нескольких тысяч пикофарад.
Различные типы бумажных конденсаторов: КБ (бумажные), КБГ (бумажные герметизированные), КБГМ (бумажные герметизированные малогабаритные) — могут иметь емкость от тысячи пикофарад (0,001 мкф) до нескольких микрофарад. Особую группу составляют электролитические конденсаторы (КЭ), о которых будет рассказано в четвертой главе.
Зарядим конденсатор от батареи и подключим его к катушке. В созданном нами контуре сразу же начнутся электромагнитные колебания (рис. 46).
Рис. 46. В процессе электромагнитных колебаний в контуре происходит непрерывный переход потенциальной энергии электрического поля конденсатора в кинетическую энергию магнитного поля катушки и обратно. При этом с определенной частотой меняется напряжение на элементах контура и ток в нем.
Разрядный ток конденсатора, проходя по катушке, создает вокруг нее магнитное поле. Это значит, что во время разряда конденсатора энергия его электрического поля переходит в энергию магнитного поля катушки, подобно тому как при колебаниях маятника или струны потенциальная энергия переходит в кинетическую.
По мере того как конденсатор разряжается, напряжение на его обкладках падает, а ток в контуре растет, и к тому моменту, когда конденсатор полностью разрядится, ток будет максимальным (амплитуда тока). Но и после окончания разряда конденсатора ток не прекратится — убывающее магнитное поле катушки будет поддерживать движение зарядов, и они вновь начнут накапливаться на обкладках конденсатора. При этом ток в контуре уменьшается, а напряжение на конденсаторе растет. Этот процесс обратного перехода энергии магнитного поля катушки в энергию электрического поля конденсатора несколько напоминает то, что происходит, когда маятник, проскочив среднюю точку, поднимается вверх.
К моменту, когда ток в контуре прекратится и магнитное поле катушки исчезнет, конденсатор окажется заряженным до максимального (амплитудного) напряжения обратной полярности. Последнее означает, что на той обкладке, где раньше были положительные заряды, теперь будут отрицательные, и наоборот. Поэтому, когда вновь начнется разряд конденсатоpa (а это произойдет немедленно после того, как он полностью зарядится), то в цепи пойдет ток обратного направления.
Периодически повторяющийся обмен энергией между конденсатором и катушкой и представляет собой электромагнитные колебания в контуре. В процессе этих колебаний в контуре протекает переменный ток (то есть изменяется не только величина, но и направление тока), а на конденсаторе действует переменное напряжение (то есть изменяется не только величина напряжения, но и полярность зарядов, накапливающихся на обкладках). Одно из направлений напряжения тока условно называют положительным, а противоположное направление — отрицательным.
Наблюдая за изменениями напряжения или тока, можно построить график электромагнитных колебаний в контуре (рис. 46), подобно тому как мы строили график механических колебаний маятника (рис. 39). На графике значения положительного тока или напряжения откладывают выше горизонтальной оси, а отрицательного — ниже этой оси. Ту половину периода, когда ток протекает в положительном направлении, часто называют положительным полупериодом тока, а другую половину — отрицательным полупериодом тока. Можно говорить также и о положительном и отрицательном полупериоде напряжения.
Хочется еще раз подчеркнуть, что слова «положительный» и «отрицательный» мы используем совершенно условно, лишь для того чтобы отличить два противоположных направления тока.
Электромагнитные колебания, с которыми мы познакомились, называют свободными или собственными колебаниями. Они возникают всякий раз, когда мы передаем контуру некоторый запас энергии, а затем даем возможность конденсатору и катушке свободно обмениваться этой энергией. Частота свободных колебаний (то есть частота переменного напряжения и тока в контуре) зависит от того, насколько быстро конденсатор и катушка могут накапливать и отдавать энергию. Это, в свою очередь, зависит от индуктивности Lк и емкости Ск контура, подобно тому, как частота колебаний струны зависит от ее массы и упругости. Чем больше индуктивность L катушки, тем больше времени нужно, чтобы создать в ней магнитное поле, и тем дольше это магнитное поле сможет поддерживать ток в цепи. Чем больше емкость С конденсатора, тем дольше он будет разряжаться и тем больше времени понадобится, чтобы этот конденсатор перезарядить. Таким образом, чем больше Lк и Ск контура, тем медленнее происходят в нем электромагнитные колебания, тем ниже их частота. Зависимость частоты f0 свободных колебаний от Lк до Ск контура выражается простой формулой, которая является одной из основных формул радиотехники:
Смысл этой формулы предельно прост: для того чтобы увеличить частоту собственных колебаний f0, нужно уменьшить индуктивность Lк или емкость Ск контура; чтобы уменьшить f0, индуктивность и емкость нужно увеличить (рис. 47).
Рис. 47. Частота собственных электромагнитных колебаний в контуре зависит от индуктивности его катушки и емкости конденсатора. При уменьшении индуктивности или емкости частота растет.
Из формулы для частоты можно легко вывести (мы это уже делали с формулой закона Ома) расчетные формулы для определения одного из параметров контура Lк или Ск при заданной частоте и известном втором параметре. Удобные для практических расчетов формулы приведены на листах 73, 74 и 75.
БОРЬБА ЗА ДОБРОТНОСТЬ
Стечением времени амплитуды напряжения и тока в контуре уменьшаются — электромагнитные колебания затухают, подобно тому как затухают колебания маятника или струны (рис. 48, 49).
Рис. 48. Колебания маятника затухают потому, что запасенная при толчке энергия постепенно расходуется.
Рис. 49. Чтобы продлить свободные колебания маятника, то есть ослабить их затухание, необходимо уменьшить потери энергии (например, потери из-за трения).
Затухание электромагнитных колебаний в контуре связано с тем, что всякий раз при «перекачивании» энергии из конденсатора в катушку и обратно часть этой энергии безвозвратно теряется. Основные потери энергии в контуре — это потери в проводе катушки, в соединительных проводах, в изоляции проводов, потери в диэлектрике конденсатора и каркасе катушки, а также на излучение электромагнитных волн. Таким образом, если мы хотим нарисовать реальную схему контура, то, помимо контурной катушки Lк и конденсатора Ск, мы должны включить в нее и сопротивления, которые будут характеризовать потери энергии (лист 76). В действительности никаких сопротивлений (имеется в виду отдельная деталь) в контуре, конечно, нет. Но потери энергии в катушке, конденсаторе и т. д. существуют реально. Для того чтобы не забывать об этом, мы и рисуем на схеме не только катушку Lк и конденсатор Ск, но и условные сопротивления, которые отображают фактически существующие потери энергии.
Основные виды потерь — потери в катушке, потери на излучение и другие — условно характеризуются сопротивлением Rк, включенным последовательно, с Lк и Ск (лист 76, упрощенные схемы). Во время колебаний по сопротивлению Rк проходит весь контурный ток и, чем больше Rк, тем больше энергии на нем теряется.
Для учета некоторых видов потерь (потери в конденсаторе, в каркасе и др.) иногда приходится считать, что в контуре имеется еще одно сопротивление Rш, шунтирующее (лист 32), конденсатор Ск или катушку Lк. Во время разряда конденсатора ток разветвляется: часть его проходит через катушку и создает там запасы энергии в виде магнитного ноля. Другая часть разрядного тока проходит через сопротивление Rш и создаст там безвозвратные потери энергии. Чем меньше Rш, тем больший ток через него проходит, тем больше энергии теряется на этом сопротивлении.
Таким образом, для того чтобы уменьшить потери в контуре, нужно стремиться к тому, чтобы сопротивление Rк было как можно меньше, а сопротивление Rш как можно больше (рис. 50, 51).
Рис. 50. Электромагнитные колебания в контуре, как и механические колебания маятника, затухают из-за потерь энергии. Потери в контуре учитывают с помощью двух условных сопротивлений — последовательного и шунтирующего (параллельного).
Рис. 51. Чем меньше потери энергии, тем выше добротность контура, тем медленнее затухают в нем колебания. Для повышения добротности последовательное сопротивление нужно уменьшать, а параллельное увеличивать.
Сопротивления Rк и Rш на схемах радиоаппаратуры не изображаются, так как они не представляют собой самостоятельных деталей. Однако эти сопротивления реально существуют и, потребляя энергию, приводят к затуханию колебаний.
Для характеристики затухания колебаний существует специальная величина, называемая добротностью (лист 77).
Добротность обозначается буквой «Q» и представляет собой относительное число, показывающее, во сколько раз энергия, запасаемая в конденсаторе или катушке за четверть периода. больше, чем энергия, теряемая на сопротивлениях Rк и Rш за то же время. Совершенно очевидно, что, чем выше добротность Q, тем медленнее будут затухать колебания в контуре (лист 78).
Добротность реальных колебательных контуров обычно лежит в пределах от 30 (в контуре каждый раз теряется одна тридцатая часть, то есть около 3 % перекачиваемой энергии) до 300 (потери около 0,3 % от запасенной энергии). Добротность специальных колебательных систем (кварцевые пластины, объемные резонаторы) достигает нескольких десятков и даже сотен тысяч.
Ухудшить добротность контура (иногда возникает и такая необходимость) можно очень просто: достаточно увеличить потери в контуре, увеличив Rк или уменьшив Rш. Для этого можно, например, включить в контур обычные сопротивления.
Что же касается повышения Q (как правило, нам нужны контуры с высокой добротностью), то это довольно сложная задача, которая в основном решается путем уменьшения потерь в контурной катушке.
Индуктивность контурных катушек, применяемых на коротких и ультракоротких волнах (лист 81), очень мала и составляет единицы и даже десятые доли микрогенри (лист 66). Катушки такой маленькой индуктивности содержат лишь несколько витков сравнительно толстого (диаметр 0,6–1,2 мм) медного провода, как правило, без всякой изоляции или покрытого тонким слоем эмали (провод ПЭ, лист 79). Диаметр провода в миллиметрах указан в его названии цифрой, которая следует сразу же после букв, определяющих марку провода.
Для уменьшения потерь в таких катушках иногда применяют провод, покрытый тонким, толщиной в несколько микрон, слоем серебра. Дело в том, что при прохождении переменного тока по проводнику наблюдается интересное явление, получившее название поверхностного эффекта (лист 80) или скин-эффекта («скин» в переводе на русский язык значит «кожа»). Сущность этого явления состоит в том, что переменный ток не распределяется равномерно по всему проводнику, а проходит лишь по наружному его слою. Чем выше частота, тем сильнее проявляется поверхностный эффект, тем тоньше наружный слой проводника, по которому проходит ток. Поэтому для уменьшения потерь в высокочастотных катушках их не нужно целиком делать из серебряного провода (серебро, как известно, лучше всех других металлов пропускает ток, то есть обладает наименьшим удельным сопротивлением — лист 16), а достаточно применить посеребренный провод.
Катушки КВ и УКВ контуров выполняют на керамических или полистироловых каркасах, причем шаг намотки часто в полтора-два раза превышает диаметр провода, то есть между соседними витками имеются значительные просветы. Это, между прочим, и хорошо и плохо. Хорошо потому, что, сближая либо раздвигая соседние витки, можно подгонять индуктивность катушки, а плохо потому, что при недостаточно тугой намотке или недостаточно жестком каркасе витки сместятся и индуктивность катушки изменится.
Индуктивность катушек, применяемых в колебательных контурах на длинных и средних волнах (лист 82), составляет сотни и тысячи микрогенри. Такие катушки обычно содержат несколько десятков и даже сотен витков и выполняются из тонкого (диаметром 0,1–0,2 мм) медного провода. Чаще всего используют провод марки ПЭ — провод эмалированный или ПЭШО — провод эмалированный в шелковой оплетке. Намотку производят на каркасах из картона, эбонита, полистирола и других изоляционных материалов, причем всю обмотку часто делят на несколько секций что позволяет несколько снизить потери. В ряде фабричных приемников, особенно старых выпусков, широко применялась намотка «Универсаль», выполняемая на специальных станках. Намотка «Универсаль» характеризуется тем, что провод укладывается ровными рядами, несколько «перекрещенными», то есть повернутыми один относительно другого. В настоящее время намотка «Универсаль» применяется редко — вместо нее производят намотку «внавал», укладывая провод между двумя щечками.
Раньше для намотки ДВ и СВ катушек широко применялся провод литцентрат (ЛЭШО — литцентрат эмалированный в шелковой оплетке), состоящий из нескольких тонких (диаметром 0,05—0,07 мм), изолированных друг от друга медных проводов. Общая поверхность всех этих проводов получается довольно большой, и поэтому на высоких частотах сопротивление литцентрата оказывается несколько меньше, чем у обычного провода такого же диаметра. Следует отметить, что в случае применения литцентрата необходимо тщательно зачищать и пропаивать все его проводники. Одна непропаянная жилка может во много раз ухудшить добротность катушки.
Несмотря на то что литцентрат позволяет заметно уменьшить потери в катушке, в настоящее время он почти не применяется. Уменьшение потерь в катушке получают более эффективным и в то же время более простым и дешевым способом — путем применения ферромагнитных сердечников (лист 83).
Как уже говорилось, ферромагнитный сердечник резко увеличивает индуктивность катушки. Поэтому, если изготовить две катушки с одинаковой индуктивностью — одну из них с сердечником, а другую без него, то у катушки с сердечником будет намного меньше витков, и поэтому сопротивление ее тоже будет меньше (сопротивление проводника зависит от его длины: чем длиннее проводник, тем больше его сопротивление).
Для катушек, по которым течет переменный ток, нельзя использовать сердечник из целого куска стали, так как изменяющееся магнитное поле катушки наведет в таком сердечнике вихревой ток, потеряв на это большую часть энергии. Таким образом, сердечник, с помощью которого мы хотели уменьшить потери в катушке, сам становится источником потерь, которые возрастают с увеличением частоты переменного тока в контуре.
Для борьбы с этим видом потерь сердечники низкочастотных катушек (то есть катушек, по которым проходит ток низкой частоты) собирают из отдельных, изолированных друг от друга пластин. Ток, наведенный в каждой такой пластине, создает свое магнитное поле, которое… ослабляет токи в соседних пластинах. В результате токи в пластинах сердечника оказываются очень слабыми, и он «отбирает» у катушки мало энергии. Чем тоньше пластины, из которых собран сердечник, тем меньше потери в нем.
В высокочастотных катушках собирать сердечник из тонких пластин уже оказывается недостаточным. Сердечники для этих катушек прессуют из ферромагнитного порошка, смешанного со специальными связующими веществами (бакелитовый лак, полистирол и др.). Связующее вещество обволакивает отдельные крупинки ферромагнитного порошка и изолирует их друг от друга. Спрессованные подобным образом ферромагнитные порошки плохо проводят электрический ток, и поэтому они получили название магнитодиэлектриков. Для изготовления сердечников высокочастотных катушек чаще всего используются следующие магнитодиэлектрики: магнетит, альсифер, карбонильное железо и ферриты. Наиболее широко в последнее время используются ферриты, большинство которых увеличивает индуктивность катушки намного сильней, чем другие магнитодиэлектрики. Обычно сердечник выполняют в виде стержня с резьбой, который ввинчивается в каркас катушки. Выпускаются также сердечники типа СБ (сердечник броневой), имеющие форму закрытой чашки (горшка), внутрь которой вставляется сама катушка. В горшкообразном сердечнике также имеется подвижной стерженек, снабженный резьбой. Применение ввинчивающихся сердечников имеет одно большое достоинство: перемещая такой сердечник внутри катушки, можно в значительных пределах менять ее индуктивность, а это часто бывает очень важно.
Применение сердечников из магнитодиэлектриков позволяет в несколько раз уменьшить сопротивление потерь и, следовательно, повысить добротность Q контура. Другие пути уменьшения потерь — это применение в качестве Ск керамических, слюдяных и воздушных конденсаторов, обладающих малыми потерями; монтаж высокочастотных цепей короткими проводами; использование для каркаса катушки материала с малыми потерями, а также ряд других мер. В любительских условиях не всегда имеется возможность да и не всегда есть смысл принимать все возможные меры для уменьшения потерь, и поэтому часто приходится мириться с несколько пониженной добротностью контуров.
Добротность Q контура зависит не только от потерь в нем, но и от соотношения между индуктивностью Lк и емкостью Ск; чем больше Lк и чем меньше Ск, тем выше добротность. С другой стороны, из формулы для определения f0 (рис. 47, лист 73) видно, что одну и ту же частоту собственных колебаний можно получить при различных соотношениях Lк и Ск. Иными словами, если емкость Ск уменьшить, например, в 10 раз и во столько же раз увеличить индуктивность Lк, то произведение LкCк останется неизменным, а значит, не изменится и частота f0.
Из всего этого можно сделать простой вывод: если хочешь повысить добротность контура, уменьшай его емкость и увеличивай индуктивность (в одно и то же число раз, иначе изменится частота!).
Если посмотреть на схему самых различных приемников и передатчиков, то можно увидеть, что в контурах почти всегда используются конденсаторы, емкость которых не превышает нескольких сотен пикофарад. А ведь если бы соотношение между Lк и Ск не влияло на величину добротности, то мы, пожалуй, еще подумали, каким путем легче построить контур — применяя громоздкую катушку большой индуктивности и конденсатор малой емкости или же используя конденсатор емкостью в несколько микрофарад и простейшую катушку, содержащую всего два-три витка.
В заключение необходимо отметить, что в погоне за высокой добротностью нельзя беспредельно увеличивать индуктивность и уменьшать емкость контура. Здесь существует ряд ограничений, разбирать которые мы не имеем возможности, так как это отвлечет нас от основной задачи.
Итак, мы выяснили, что в контуре, состоящем из конденсатора и катушки, могут возникнуть собственные электромагнитные колебания и что постепенно эти колебания затухают. Чем меньше потери энергии в контуре, то есть чем выше его добротность, тем медленнее затухают в нем собственные колебания.
Но как можно использовать контур в приемнике и какое значение при этом будет иметь добротность?.. К выяснению этих вопросов мы сейчас и приступаем.
РЕЗОНАНС
Давайте раскачивать маятник в такт с его собственными колебаниями. Качнулся маятник вправо — и мы слегка подтолкнем его вправо; двигается маятник в противоположную сторону — и мы опять поможем ему, подтолкнув влево. Если мы будем подталкивать маятник с той же частотой, с какой он сам колеблется, то колебания не только перестанут затухать, но станут намного сильнее. Произойдет это потому, что подталкивание маятника скомпенсирует потери энергии, из-за которых раньше колебания затухали. Более того, наши подталкивания помогут маятнику преодолеть сопротивление воздуха и трение в подшипнике и увеличить амплитуду отклонений. Чем меньше общие потери энергии, тем больше будет амплитуда отклонений при толчках одной и той же силы.
Подобную картину можно наблюдать и в колебательном контуре, если с помощью специального генератора пропустить через этот контур переменный ток (рис. 52), частота которого равна частоте собственных (свободных) электромагнитных колебаний. В этом случае, который получил название «резонанс», в контуре происходит ряд интересных явлений, широко используемых в радиотехнике.
Рис. 52. Колебательный контур, в отличие от обычного сопротивления, по-разному пропускает токи различных частот. Наибольший ток в контуре и наибольшее напряжение на нем будет при резонансе, то есть тогда, когда частота подводимого переменного тока (например, от специального генератора) окажется равной частоте собственных колебаний контура.
Ток, поступающий от генератора, действуя в такт с переменным током собственных колебаний, как бы «подталкивает» движущиеся заряды, помогая им преодолеть сопротивление потерь. Более того, благодаря «помощи» генератора амплитуда тока в контуре при резонансе сильно увеличивается. Правда, с увеличением тока возрастут и потери энергии: ведь контурный ток проходит по сопротивлению Rк и, чем больше ток, тем больше энергии будет теряться на этом сопротивлении. Поэтому при резонансе автоматически установится такой контурный ток, при котором энергия, поступающая от генератора, сможет компенсировать потери в контуре. Совершенно очевидно, что, чем меньше эти потери, то есть чем выше добротность Q контура, тем сильнее будет контурный ток при одной и той же энергии, поступающей от генератора.
Если увеличить ток, поступающий от генератора в контур, то возрастет и контурный ток. Если же с генератора будет поступать модулированный ток, то электромагнитные колебания в контуре также окажутся промодулированными.
При резонансе электромагнитная энергия, которой «обмениваются» конденсатор и катушка, в Q раз больше энергии, получаемой от генератора; подобно тому как потенциальная и кинетическая энергия, запасаемая при колебаниях маятника, может быть во много раз больше энергии наших подталкиваний, помогающих маятнику преодолеть трение. Разными способами подключая контур к генератору, можно добиться того, что при резонансе ток в контуре будет во много раз, а точнее, в Q раз больше, чем ток, поступающий от генератора. Этот случай получил название «резонанс токов». При другом способе соединения генератора и контура можно получить так называемый «резонанс напряжений», при котором напряжение на конденсаторе и на катушке будет в Q раз больше, чем напряжение генератора (листы 151, 152). Это свойство колебательного контура можно использовать в приемнике для того, чтобы повысить напряжение, которое подводится к детектору, и тем самым повысить громкость передачи.
В простых приемниках роль генератора, «подталкивающего» собственные колебания в контуре (этот контур часто называют «входным»), выполняет подключенная к нему антенна (листы 85, 86), в которой электромагнитные ваты наводят высокочастотный ток. Поскольку в антенне действует модулированный ток, то и напряжение, возникающее на контуре, также окажется модулированным. Это напряжение можно подвести непосредственно к детектору (точнее, к цепи детектор — телефон) и детектировать его так же, как мы это делали в простейшем приемнике.
При этом можно сразу же отметить, что приемник с контуром будет работать заметно громче простейшего приемника (рис. 53, 54).
Рис. 53. Простейший приемник не обладает избирательностью — он одинаково хорошо (точнее, одинаково плохо!) детектирует и воспроизводит все наведенные в его антенне сигналы, если, конечно, они достаточно сильны.
Рис. 54. Приемник с колебательным контуром обладает избирательностью — благодаря резонансу контур выделяет сигналы той станции, частота которой равна частоте собственных колебаний этого контура.
Это объясняется тем, что напряжение, возникающее на контуре, за счет резонанса, значительно больше, чем напряжение, которое подводилось к цепи детектор — телефон в бесконтурном приемнике. Чем больше напряжение, действующее на телефоне, тем больше и импульсы тока в его катушке (закон Ома!), тем сильнее колеблется мембрана, тем громче звук. Развивая эту мысль, можно заметить, что громкость возрастает и при увеличении добротности контура (рис. 55).
Рис. 55. Чем выше добротность контура, тем сильнее проявляются его резонансные свойства, тем лучше избирательность приемника. Кроме того, с увеличением добротности возрастает напряжение на контуре при резонансе, а значит, и громкость приема.
Хочется еще раз подчеркнуть, что резонанс в контуре наступает лишь в том случае, когда частота генератора, к которому этот контур подключен, равна частоте возникающих в контуре собственных колебаний. Так, например, если частота генератора равна 200 кгц, а частота собственных колебаний контура 150 кгц, то никакого резонанса, конечно, не будет. Для того чтобы добиться резонанса, необходимо либо уменьшить частоту генератора до 150 кгц, либо увеличить частоту собственных колебаний контура до 200 кгц. Последнее можно сравнительно просто сделать, уменьшив индуктивность Lк или емкость Ск контура. Ведь мы уже отмечали, что чем меньше Lк и Ск, тем больше частота собственных колебаний f контура (лист 73, рис. 47).
На листах 85 и 86 приведены четыре схемы детекторных приемников с колебательным контуром. Во всех этих приемниках детектор Д1, включенный последовательно с телефонами, подсоединен к контуру LкCK. Модулированное напряжение, действующее на этом контуре, создает в цепи детектор — телефон пульсирующий ток, который и заставляет мембрану телефона колебаться со звуковой частотой. На всех схемах Сф— это конденсатор фильтра, улучшающий работу детектора. Более подробно с ролью этого конденсатора мы познакомимся позднее. В приемнике, собранном по первой схеме (лист 85), сигнал из антенны передается прямо в контур (непосредственная связь контура с антенной).
При этом собственная емкость антенны СА оказывается включенной параллельно конденсатору Ск, и общая емкость контура равна сумме СА + Ск (листы 88, 90 — общая емкость двух параллельно соединенных конденсаторов равна сумме их емкостей; соединить два конденсатора параллельно — это равносильно тому, что взять один конденсатор с большей площадью пластин). Недостатком непосредственной связи является сильное влияние антенны на настройку контура. При замене антенны может измениться СА и, следовательно, общая емкость контура. Это, в свою очередь, приведет к изменению частоты собственных колебаний f0, нарушит условия резонанса и уменьшит громкость передачи.
Все сказанное легко пояснить простым примером. Предположим, что в контур включен конденсатор Ск емкостью 50 пф и к приемнику подключена сравнительно небольшая антенна с собственной емкостью 50 пф. В этом случае общая емкость контура равна Ск общ = 50 + 50 = 100 пф и контур настроен на нужную нам станцию. Если теперь подключить большую антенну с собственной емкостью СА = 150 пф, то общая емкость контура окажется равной 50 + 150 = 200 пф, то есть увеличится в два раза по сравнению с первым случаем. При этом собственная частота резко уменьшится (чем больше Ск, тем меньше f0) и нужного нам резонанса уже не будет.
Можно уменьшить влияние антенны, подключив ее к контуру через конденсатор связи Ссв, обычно имеющий емкость 15–20 пф (емкостная связь контура с антенной). В этом случае параллельно контурному конденсатору Ск окажется включенной цепочка, состоящая из двух последовательно соединенных конденсаторов СА (собственная емкость антенны) и Ссв (конденсатор связи). При последовательном соединении двух конденсаторов с сильно различающейся емкостью (лист 89) общая емкость примерно равна наименьшей из емкостей (несколько меньше ее). Емкость антенны почти всегда больше, чем Ссв, и поэтому если подключать к контуру различные антенны с различной собственной емкостью, то общая емкость цепочки Ссв и СА все равно будет примерно равна 15–20 пф и условия резонанса не нарушатся.
Чем меньше емкость конденсатора связи Ссв, тем меньше будет влиять антенна на настройку контура. Однако делать емкость этого конденсатора слишком малой нельзя, так как, чем меньше Ссв, тем меньше напряжение сигнала, действующее на контуре. Для того чтобы пояснить это, рассмотрим, как ведет себя конденсатор в цепи переменного тока. Вопрос этот для нас очень важен, так как с конденсаторами, включенными в цепи переменного тока, мы будем встречаться на каждом шагу.
Если говорить строго, то через конденсатор не проходит ни постоянный, ни переменный ток, так как между обкладками находится изолятор, в котором свободные электрические заряды двигаться не могут.
Включение конденсатора в цепь постоянного тока равносильно разрыву этой цепи. Что же касается переменного тока, то он будет протекать по цепи, в которую включен конденсатор, благодаря периодическому заряду и разряду этого конденсатора. Действительно, когда происходит заряд конденсатора, то электрические заряды, например электроны, на одной обкладке накапливаются, а с другой обкладки уходят. При этом они, конечно, двигаются по соединительным проводам, подключенным к обкладкам конденсатора. Такое же движение зарядов, только в противоположном направлении, происходит и при разряде конденсатора. Если включить конденсатор в цепь переменного тока, то он будет периодически заряжаться то в одной полярности, то в противоположной. Это значит, что электроны будут накапливаться то на одной, то на другой обкладке, и каждый раз при заряде и разряде свободные электроны будут двигаться по цепи, в которую включен конденсатор, не попадая, однако, в изолятор, включенный между обкладками.
А поскольку под действием переменного напряжения в цепи конденсатора двигаются заряды, то мы считаем, что конденсатор пропускает переменный ток, хотя и в этом случае заряды не проходят через изолятор.
Конденсатор влияет на величину переменного тока в цепи, и поэтому (по аналогии с законом Ома) его часто рассматривают как сопротивление. Это так называемое емкостное сопротивление обозначается буквой Хс и так же, как и обычное сопротивление, измеряется в омах. Величина Хс зависит от частоты переменного тока и от емкости С конденсатора: с уменьшением емкости конденсатора, так же как и с уменьшением частоты переменного тока, емкостное сопротивление конденсатора увеличивается (рис. 80, 81; лист 87). Эту зависимость удобно записать в виде простой формулы:
Смысл этой формулы весьма прост: чем меньше емкость С, тем меньше зарядов будет двигаться к обкладкам при каждом заряде и разряде конденсатора; чем меньше частота переменного тока, тем реже будет заряжаться и разряжаться конденсатор. Отсюда следует, что с уменьшением f и С уменьшается ток в цепи, или, иными словами, растет сопротивление конденсатора.
Этот вывод имеет огромное практическое значение. Так, например, если нам понадобится включить в цепь конденсатор с очень маленьким емкостным сопротивлением, то емкость этого конденсатора нужно будет выбирать с учетом частоты переменного тока в цепи. Для высоких частот можно будет взять конденсатор небольшой емкости, а вот для низких частот емкость конденсатора придется взять большой. Это хорошо иллюстрируется простым примером. На частоте 100 кгц конденсатор емкостью 100 пф обладает емкостным сопротивлением хс= 16 ком.
При уменьшении частоты в 1000 раз, то есть на частоте 100 гц, сопротивление конденсатора возрастете 1000 раз и станет равным 16 000 ком (16 Мом). Для того чтобы при уменьшении частоты емкостное сопротивление не изменилось, нужно увеличить емкость конденсатора. Сопротивление 16 ком на частоте 100 гц будет иметь конденсатор емкостью 100 000 пф (0,1 мкф).
Из приведенной выше формулы следует также, что уменьшение емкости конденсатора связи Ссв (лист 85) приведет к росту сопротивления этого конденсатора, а следовательно, к уменьшению тока в цепи антенны. Поэтому емкость Ссв нельзя брать слишком малой.
Сказанное можно пояснить еще иначе. Конденсатор связи и колебательный контур LкСк можно рассматривать как делитель напряжения, к которому приложена э. д. с., действующая между зажимами А («антенна») и 3 («земля»). Мы не будем пока говорить о том, чему равно сопротивление колебательного контура — даже без этого ясно: чем больше емкостное сопротивление конденсатора связи, тем меньшая часть э. д. с. будет действовать на нижней части делителя — на контуре и подключенной к нему цепи детектор — телефон.
Третья схема (лист 86) называется схемой индуктивной связи контура с антенной или схемой с трансформаторным входом. Во многих электротехнических и радиотехнических устройствах бывает нужно передать энергию из одной цепи в другую, причем соединять эти цепи между собой нежелательно или просто нельзя. В этом случае можно воспользоваться устройством, которое получило название «трансформатор».
Трансформатор состоит из двух (а иногда и более) катушек, расположенных рядом. Если к одной из катушек подвести переменный ток, то под действием изменяющегося магнитного поля во второй катушке возникнет переменная э. д. с. и таким образом будет осуществлена передача энергии между двумя фактически не соединенными цепями. Если пропустить ток по второй катушке, то э. д. с. возникнет в первой. Важно заметить, что передача энергии (то есть появление наведенной э. д. с.) будет происходить только при переменном токе. Постоянный ток создает такое же постоянное магнитное поле, а э. д.с. на катушках трансформатора появляется лишь тогда, когда окружающее их магнитное поле меняется.
На высоких частотах связь между катушками получается достаточно сильной уже тогда, когда эти катушки расположены на расстоянии нескольких миллиметров, а иногда и нескольких сантиметров одна от другой. На низких частотах ток меняется медленнее, и для эффективной передачи энергии между катушками трансформатора их приходится наматывать одну на другую и, что особо важно, обязательно располагать на стальном сердечнике.
Важнейшим достоинством трансформаторов является то, что они позволяют при передаче энергии в необходимое число раз увеличивать либо уменьшать напряжение (стр. 164).
Продолжим рассмотрение схемы приемника с индуктивной связью во входной цепи. Высокочастотный ток, наведенный в антенне, проходит по катушке связи Lсв. Магнитное поле этой катушки наводит ток в контурной катушке Lк (эти катушки размещены рядом), и таким образом энергия из антенной цепи передается в контур. Сближая либо раздвигая катушки Lсв и Lк, можно усиливать или ослаблять связь контура с антенной. Обычно в приемниках индуктивность Lсв делают в четыре-пять раз больше, чем индуктивность Lк, и эти катушки легко различить по внешнему виду. Однако в детекторном приемнике индуктивность катушки Lсв лучше всего подбирать опытным путем.
Четвертая схема (лист 86) отличается от третьей тем, что детектор подключен к отводу от катушки Lк. При этом к детектору подводится лишь часть напряжения, действующего на контуре, что, конечно, является недостатком. Но во многих случаях мы миримся с этим недостатком, так как подобное включение детектора позволяет улучшить добротность контура.
Дело в том, что цепь детектор — телефон пат у чает энергию из контура, а следовательно, эту цепь нужно рассматривать как сопротивление, шунтирующее контур (Rш). Подключая цепь детектор — телефон к части контура, мы уменьшим ток, который пойдет через нее, и тем самым уменьшим потери энергии в этой цепи (то есть увеличим добротность Q контура). Так, например, если на контуре действует напряжение 10 в, а сопротивление цепи детектор — телефон 1 ком, то через эту цепь пойдет ток 10 ма.
Если же подключить детектор к средней точке катушки, то к нему уже будет приложено напряжение в 5 в (катушку можно рассматривать как делитель напряжения), ток в цепи детектор — телефон уменьшится до 5 ма, а следовательно, уменьшится и мощность, потребляемая этой цепью от контура. Это, в свою очередь, приведет к повышению добротности Q. Таким образом, чем ниже (по схеме) точка подключения детектора, тем меньше подводимое к нему напряжение, но в то же время больше Q контура. Можно так подобрать отвод от катушки Lк, что ток в цепи детектор — телефон уменьшится незначительно, a Q контура возрастет в полтора-два раза. А чем выше добротность, тем сильнее проявляется одно из замечательных свойств контура — его избирательность.
КОНТУР ВЫБИРАЕТ
Если изменять частоту переменного тока, который подводится к контуру от генератора, то будет изменяться амплитуда тока в контуре. Измеряя ток в контуре при разных частотах генератора, можно построить график, показывающий зависимость этого тока от частоты. Такой график называется резонансной кривой контура. Наибольший контурный ток будет при резонансе, когда частота генератора равна частоте собственных колебаний f0, которую обычно называют резонансной частотой и иногда обозначают fрез.
При отходе от резонансной частоты ток в контуре уменьшается, причем, чем сильнее отличается частота генератора от резонансной, тем меньше контурный ток (рис. 52). Поэтому, если подключить к контуру антенну и, подобрав индуктивность Lк и емкость Ск, настроить его в резонанс с принимаемой станцией (то есть сделать так, чтобы частота собственных колебаний контура f0 стала равна частоте принимаемой станции), то сигналы других станций, частоты которых отличаются от резонансной, будут ослабляться (рис. 54, 55).
Предположим, что в антенне действуют три одинаковых по силе сигнала от трех радиостанций, одна из которых работает на частоте 150 кгц, другая на частоте 200 кгц и третья на частоте 1000 кгц. Из антенны все эти сигналы поступают в контур приемника, настроенный на частоту 200 кгц. В этом случае, несмотря на то что в антенне все три станции создают одинаковые по силе сигналы, самое большое напряжение на контуре создаст сигнал с частотой 200 кгц, так как для него контур настроен в резонанс. Напряжения с частотой 150 кгц и особенно 1000 кгц окажутся намного меньше. Так, например, если сигнал с частотой 200 кгц создаст на контуре напряжение 1 в, то сигнал с частотой 150 кгц создаст напряжение 0,1 в, а сигнал с частотой 1000 кгц, особенно далекой от резонанса, создаст на контуре напряжение не более 0,01 в. Эти цифры можно считать вполне реальными. Конечно, изменив индуктивность и емкость контура, можно настроить его на другую частоту, например 150 кгц, и тем самым добиться ослабления сигналов с частотами 200 кгц и 1000 кгц.
Судя по резонансной кривой, меньше всех будут ослабляться сигналы соседних станций, частота которых на 10 кгц больше или меньше частоты принимаемой станции (лист 91). Относительное число, показывающее, во сколько раз контурный ток (или напряжение на контуре) с частотой принимаемой станции больше, чем контурный ток с частотой соседней станции (при условии, что ток, наведенный обеими станциями, в антенне одинаков), называется избирательностью по соседнему каналу. Так, например, если напряжение резонансной частоты равно 5 в, а напряжение соседней станции 0,5 в, то избирательность контура равна 10.
Избирательность — это замечательное свойство контура, и благодаря этому свойству без колебательных контуров не обходится ни один приемник. Именно избирательность колебательного контура дает возможность выделить сигналы нужной нам станции среди бесчисленного множества сигналов, действующих в антенне.
Об избирательности контура можно судить по «остроте» резонансной кривой. Чем острее резонансная кривая, чем круче ее спады, тем больше будет ослабляться сигнал соседней мешающей станции, тем лучше избирательность приемника. Форма резонансной кривой сильно зависит от добротности Q контура: чем больше Q, тем «острее» резонансная кривая. Таким образом улучшение добротности контура не только увеличивает чувствительность приемника, но и повышает его избирательность (рис. 54, 55).
В некоторых приемниках, предназначенных для местного приема, имеется несколько контуров, каждый из которых настроен на определенную станцию. Включение нужного контура осуществляется с помощью переключателя, и такая система получила название фиксированной настройки. Фиксированная настройка очень удобна для радиослушателя, но с увеличением числа принимаемых станций схема и конструкция приемника сильно усложняются.
Значительно проще осуществить прием большого числа станций, если применить плавную настройку колебательного контура путем постепенного изменения емкости Ск или индуктивности Lк.
Для плавной настройки приемника обычно используется конденсатор переменной емкости (лист 92). Такой конденсатор состоит из двух частей: неподвижной — статора и подвижной — ротора. Статор и ротор собраны из тонких пластин, причем ротор соединен с металлическим корпусом конденсатора, а статор изолирован от него. Большое число пластин необходимо для того, чтобы получить сравнительно большую емкость при небольших габаритах конденсатора. При монтаже ротор, как правило, соединяют с нижним (по схеме) концом катушки, то есть фактически заземляют. При повороте ротора изменяется расстояние между его пластинами и пластинами статора, а вместе с этим изменяется и емкость конденсатора. Основной характеристикой таких конденсаторов является максимальная емкость Смакс (пластины полностью введены) и минимальная емкость Смин (пластины полностью выведены). На схемах указываются обе эти величины (через тире).
Широкое распространение получили стандартные блоки, состоящие из двух конденсаторов переменной емкости (двух секций), каждый из которых имеет максимальную емкость Смакс = 450 (520) пф и минимальную Смин = 15 (25) пф. Роторы обеих секций соединены между собой, так как они закреплены на общей металлической оси. На схеме конденсаторы, роторы которых закреплены на одной оси, соединяют пунктирной линией. В случае необходимости, например в детекторном приемнике, можно использовать только одну секцию блока, не подключая никуда статор второй секции.
С помощью одного конденсатора стандартного блока можно плавно изменять частоту настройки контура в три-четыре раза и таким образом полностью перекрыть один из радиовещательных диапазонов. При этом максимальной емкости будет соответствовать самая низкая частота диапазона, а минимальной емкости — самая высокая частота. Это следует из рассмотренной нами основной формулы для f0: с увеличением емкости конденсатора резонансная частота контура уменьшается.
Для перехода с одного диапазона на другой в контуре осуществляется переключение катушек. Так, например, для перехода с длинных волн на средние индуктивность катушки Lк уменьшают примерно в десять раз, а при переходе на короткие волны — еще в десять — двадцать раз. Конденсатор настройки на всех диапазонах используется одни и тот же, а катушки к нему подключаются с помощью переключателя (переключатель диапазонов, рис. 56).
Рис. 56. Для настройки приемника на нужную станцию в пределах диапазона используется конденсатор с плавно меняющейся емкостью, а для перехода с диапазона на диапазон — включение катушек с различной индуктивностью.
Для того чтобы при налаживании приемника можно было точно подогнать границы диапазона, в контур вводят элементы подстройки. Один из этих элементов — это подключенный непосредственно к катушке, а следовательно, определяющий общую емкость контура, подстроечный конденсатор Сп (лист 93), емкость которого можно изменять от 5—10 до 25–50 пф. Этот конденсатор (его иногда называют «триммер») особенно сильно влияет на настройку контура на самых высоких частотах, когда ротор конденсатора настройки выведен. Это объясняется тем, что подстроечный конденсатор фактически подключен параллельно конденсатору настройки Ск, и общая емкость контура определяется их суммой.
Когда емкость конденсатора настройки Ск мала, то даже небольшие изменения емкости Сп оказываются весьма ощутимыми. Если же полностью ввести ротор конденсатора Ск, то на фоне его большой емкости влияние Сп будет незначительным. Сказанное хорошо иллюстрируется простым примером. Допустим, что емкость Ск изменяется от 20 пф до 500 пф, а емкость Сп можно менять в пределах 5—30 пф. При выведенном роторе конденсатора настройки (Ск = 20 пф) общую емкость контура можно менять с помощью Сп от 25 пф (20 + 5) до 50 пф (20 + 30), то есть в два раза. Когда же мы введем ротор (Ск = 500 пф), то общую емкость контура можно будет менять лишь на 5 % — от 505 пф (500 + 5) до 530 пф (500 + 30). Поэтому мы и говорим, что в основном Сп влияет на резонансную частоту контура на самых высоких частотах диапазона, то есть при минимальной емкости конденсатора Ск (рис. 57, 58).
Рис. 57. На коротковолновом участке любого диапазона (высшие частоты, ротор выведен) подстройку производят с помощью подстроечного конденсатора…
Рис. 58. …а на длинноволновом участке (низшие частоты, ротор введен) с помощью сердечника катушки и подбором числа витков.
После налаживания приемника, когда емкость подстроечного конденсатора Сп окончательно подобрана, к нему больше не прикасаются.
Чаще всего встречаются следующие типы подстроечных конденсаторов: воздушный, очень напоминающий обычный конденсатор настройки с небольшим числом миниатюрных статорных и роторных пластин; трубчатый, в котором обе обкладки имеют форму цилиндров (наподобие конденсатора КТК), один из которых перемещается с помощью винта; дисковый керамический, состоящий из двух керамических частей — основания и поворачивающегося диска, на который нанесен слой серебра — одна из обкладок конденсатора. Вторая обкладка закреплена на керамическом основании. При вращении керамического диска меняется взаимное расположение обкладок, а следовательно, и емкость конденсатора. Во всех случаях подстроечный конденсатор обозначается на схеме как обычный постоянный, с той лишь разницей, что нижняя черточка рисуется в виде дуги со стрелкой.
Очень удобно производить подстройку контура, если в катушке имеется ферромагнитный сердечник. Вдвигая такой сердечник в катушку, мы увеличиваем ее индуктивность и уменьшаем резонансную частоту контура. Если катушка выполнена из двух отдельных секций, то ее индуктивность можно изменять, сближая либо раздвигая секции: чем ближе одна секция к другой, тем сильнее взаимодействуют их магнитные поля, как бы усиливая друг друга, тем, следовательно, больше общая индуктивность катушки (лист 96). Сказанное справедливо лишь тогда, когда секции намотаны в одну и ту же сторону и начало одной из них соединено с концом другой. Если не выполняется одно из этих условий, то магнитные поля отдельных секций ослабляют друг друга, и при сближении секций общая индуктивность уменьшается.
Если в контуре имеется и подстроечный конденсатор и катушка с сердечником, то подстройку контура путем изменения индуктивности катушки целесообразно производить при максимальной емкости конденсатора настройки Ск, то есть тогда, когда подстроечный конденсатор Сп на резонансную частоту почти не влияет (рис. 58).
Используя одну секцию стандартного блока конденсаторов, две катушки и переключатель для включения этих катушек в контур (переключатель диапазонов), можно собрать детекторный приемник с плавной настройкой на ДВ и СВ диапазонах. Благодаря резонансным свойствам контура такой приемник будет обладать некоторой избирательностью и будет работать громче, чем простейший детекторный приемник, описанный в предыдущей главе.
ДЕТЕКТОРНЫЙ, ДВУХДИАПА3ОННЫЙ, С ПЛАВНОЙ НАСТРОЙКОЙ
На чертеже 2 показаны общий вид и принципиальная схема двухдиапазонного детекторного приемника с плавной настройкой.
Чтобы этот приемник работал, к нему нужно подключить наружную антенну (к гнезду «А») и заземление (к гнезду «3»). Гнездо «А» (антенна) соединяется с переключателем диапазонов. Последний фактически состоит из нескольких одинаковых переключателей (их обычно называют секциями), которые связаны с одной общей осью и поэтому управляются (переключаются) одновременно (лист 94, чертеж 7).
На схемах и в описании отдельные секции какого-либо переключателя обозначаются буквой П (переключатель) с индексом, который состоит из цифры и буквы. Цифра указывает порядковый (для данной схемы) номер переключателя, а буква относится к определенной секции.
Так, например, если в схеме имеется два переключателя, то секции первого из них будут обозначаться: П1а, П1б и т. д. в зависимости от числа секций. Секции второго переключателя будут обозначаться П2а, П2б и т. д.
Во всех приемниках, которые нам предстоит построить, будет использован один переключатель, обозначаемый на схемах как П1. В этом переключателе должно быть четыре секции (а, б, в, г), каждая из которых имеет один подвижной и три неподвижных контакта. В крайнем случае можно обойтись переключателем с тремя секциями, то есть с тремя подвижными контактами.
Во многих любительских приемниках используются более простые переключатели — тумблеры (лист 95), а также более сложные, но зато более удобные клавишные переключатели, где все необходимые переключения (коммутация) осуществляются путем замыкания или размыкания тех или иных контактов (аналогично верхнему рисунку на листе 94).
Подвижной контакт переключателя диапазонов на наших схемах обозначается буквой п с индексом соответствующей секции. Например, обозначение пб соответствует подвижному контакту секции б. При переключении диапазонов каждый подвижной контакт соединяется с каким-либо из трех неподвижных контактов своей секции. Обозначения неподвижных контактов соответствуют диапазону, на котором к ним подключаются подвижные контакты. Так, например, обозначение бд означает «секция б диапазон длинных волн», аналогично обозначение ак соответствует секции а и диапазону коротких волн. Такую подробную систему мы ввели для того, чтобы начинающему радиолюбителю легче было разбирать схему и монтировать приемник.
В нашем детекторном приемнике из четырех секций переключателя П1 используются только две — П1а и П1б. Остальные секции в этом приемнике не нужны, и контакты их никуда не подключаются. К подвижному контакту ап через гнездо А подключается антенна. При приеме на длинных ватах (крайнее верхнее положение подвижного контакта) антенна оказывается подключенной к катушке связи L1, которая, в свою очередь, индуктивно, то есть через общий магнитный поток, связана с контурной катушкой L2. Индуктивность катушки L2 выбрана таким образом, что она вместе с конденсатором настройки обеспечивает резонансные частоты контура, соответствующие станциям длинноволнового диапазона (150–420 кгц). Конденсатор настройки С5, а вместе с ним и цепь детектор — телефон подключаются к контурной катушке L2 отдельной секцией П1б.
Как уже говорилось, перемещение подвижных контактов происходит одновременно во всех секциях переключателя, и поэтому при переходе на средние волны антенна будет подключена уже к катушке связи L3 вместо L1, а в контур будет входить катушка L4 вместо L2.
Следует заметить, что подстроечные конденсаторы С2 и С3 коммутировать (переключать) нет необходимости. Каждый из них соединяется с соответствующей контурной катушкой и вместе с ней включается в контур. Конденсатор настройки С5 и цепь детектор — телефон являются общими для обоих диапазонов, и поэтому они подключаются либо к катушке L2 (ДВ), либо к катушке L1 (СВ). Параллельно головному телефону подключен так называемый конденсатор фильтра, с ролью которого мы познакомимся несколько позже. Попутно заметим, что головные телефоны обычно идут в комплекте по два (два наушника на общем оголовье) и соединены последовательно. В предлагаемой схеме детекторного приемника выбрана индуктивная связь контура с антенной (лист 86). Сделано это для того, чтобы изготовленные для детекторного приемника катушки можно было использовать и в других приемниках, в том числе и в супергетеродине. При желании можно сделать и более простую — емкостную связь с антенной (лист 85). В этом случае катушки связи L1 и L3 уже не нужны. Не нужна и секция П1а переключателя диапазонов, так как конденсатор связи Ссв (С1) можно подключить непосредственно к контуру (пунктирная линия). Емкостную связь с антенной можно применять почти во всех приемниках, которые нам предстоит построить, и во всех случаях это будет давать «экономию» целой группы катушек и одной секции переключателя диапазонов.
Не следует путать конденсатор связи С'1 с защитным конденсатором С1, который нужен для того, чтобы защитить входную цепь при случайном соединении антенны с проводами электросети. Емкость С, достаточно велика и для токов высокой частоты не представляет большого сопротивления. В то же время для частоты 50 гц (частота тока в электросети) сопротивление конденсатора С, настолько велико, что он фактически разрывает цепь антенны.
Теперь поговорим о конструкции нашего приемника и о применяемых в нем самодельных деталях.
Конечной нашей целью является постройка четырехлампового трехдиапазонного супергетеродинного приемника (чертеж 1).
К этой цели мы будет двигаться постепенно, шаг за шагом, строя детекторные и простейшие ламповые приемники.
Для того чтобы на каждом промежуточном этапе не изготовлять шасси и корпус простейшего приемника, мы остановимся на блочной конструкции. Основой ее является деревянная рама (чертеж 3), на которой закрепляются небольшие фанерные панели.
На них и собираются отдельные узлы различных ламповых приемников. Такая блочная система позволяет легко переходить от одного типа лампового приемника к другому и потом из нескольких блоков собрать супергетеродин. При желании любой из ламповых приемников можно собрать на отдельном деревянном или металлическом шасси и изготовить для него футляр.
Детекторный приемник собирают на панели (панель ВЧ), которая будет использована и в других приемниках. Исходя из этого и выбраны размеры панели (чертеж 3) и размещены на ней основные детали.
Основными самодельными деталями приемника являются контурные катушки. Конструкций этих катушек может быть бесчисленное множество, но мы рассмотрим лишь наиболее распространенные (чертежи 4 и 5).
В современных фабричных приемниках наиболее широко применяются катушки, намотанные на небольших каркасах из полистирола, разделенных перегородками на четыре секции. Каждый из этих каркасов снабжен полистироловым винтом, к которому приклеен небольшой (диаметр 2,5 мм, длина 12–14 мм) подстроечный сердечник из феррита. На такой каркас может надеваться дополнительная, более широкая секция, специально предназначенная для катушки связи. Такие каркасы используются в приемниках «Люкс», «Дружба», «Байкал», «Октава» и многих других. В таблицах на чертежах 4 и 5 приведены намоточные данные катушек, и в частности катушек L1, L2, L3, L4, которые используются в нашем прием нике.
Совершенно очевидно, что катушка L1 объединяется, на одном каркасе с L2, а катушка L3 с катушкой L4.
В заводских приемниках весьма широкое распространение получили также катушки в разборных горшкообразных сердечниках СБ-1 (сердечник броневой с внешним диаметром 12,5 мм). Такой сердечник состоит из двух чашек, в одну из которых ввинчивается подстроечный винт (чертеж 4, в). В чашки вставляется небольшой трехсекционный каркас, на который и наматывается катушка. Когда число витков катушки окончательно подобрано, чашки склеиваются друг с другом, а концы катушек выводятся через небольшое отверстие. Важно отметить, что половинки горшкообразного сердечника должны плотно соединяться друг с другом, иначе индуктивность катушки заметно снизится.
Для катушек связи с антенной (L1 и L3) нужно склеить из картона отдельные каркасы с внутренним диаметром 12,5—13 мм. На одном из этих каркасов разместится катушка L1, а на другом — L3. Внутрь самодельных картонных каркасов вставляются соответствующие контурные катушки L2 и L4.
В сравнительно старых приемниках часто применяли катушки, выполненные в пластмассовых каркасах диаметром 12–15 мм, как правило снабженных подстроенными сердечниками (чертеж 4, б). Такие каркасы с сердечниками можно использовать для нашего приемника, установив на них картонные щечки, между которыми и располагаются обмотки.
Таким образом, мы получим на каждом каркасе по две секции — одну для катушки связи L1 или L3, а другую — для контурной катушки. Указать число витков катушек для этого случая точно нельзя, так как эти данные зависят от диаметра каркаса, материала сердечника и его размеров. Поэтому намоточные данные, приведенные в таблице, нужно рассматривать как весьма приближенные.
Если вам не удастся достать один из перечисленных типов каркасов, то можно изготовить катушки на обычных охотничьих папковых (картонных) гильзах 12 калибра, то есть с внешним диаметром 20 мм (чертеж 4, а). Поскольку сердечников в этих катушках нет, то точную подгонку индуктивности производят путем перемещения витков. Для этого общее число витков разбивают на две примерно равные части, каждую из которых размещают в отдельной секции (ширина секций по 5 мм). Одну из секций делают подвижной, склеив для нее каркас из плотной бумаги. При сближении секций общая индуктивность увеличивается, что объясняется усилением общего магнитного поля. Увеличение индуктивности при сближении секций произойдет лишь в том случае, если эти секции соединены между собой «согласно», когда одна катушка как бы является продолжением другой, катушки намотаны в одну и ту же сторону, и начало одной из них соединено с концом другой (лист 96).
Если нарушить одно из этих условий, то получится уже соединение «навстречу», и при сближении секций общая индуктивность будет уменьшаться. В катушках связи L1 и L3 индуктивность подгонять не нужно, так как подбор ее не требует большой точности и поэтому катушки связи размещают в одной секции шириной 8 мм.
Для катушки L4, выполненной на папковых гильзах, можно применить однослойную намотку (чертеж 1). Такая катушка должна содержать 160 витков (например, 120 + 40 или 2x80). Одна из секций намотана на подвижной гильзе, склеенной из бумаги. Катушка связи с антенной имеет те же данные, что и в предыдущем случае.
Вблизи каждой катушки для удобства монтажа в фанерной панели закрепляется несколько лепестков из белой жести, к которым припаиваются выводы катушек и монтажные провода (чертежи 1, 6, 8).
Рядом с лепестками располагаются подстроечные конденсаторы, которые могут быть любого типа, например керамические. Подстроечные конденсаторы можно изготовить самому. Одной из обкладок самодельного конденсатора (лист 93) является сравнительно большой лепесток из белой жести (чертеж 6), на который плотно надевают плоскую бумажную гильзу, склеенную из двух-трех слоев кальки. На кальку наматывают один слой любого медного провода, который и играет роль второй обкладки конденсатора. Перемещая бумажную гильзу вдоль жестяного лепестка, можно менять емкость от 5—10 до 25–30 пф. Для того чтобы ослабить влияние руки на емкость конденсатора (при настройке), нужно заземлить, то есть соединить с нижним по схеме концом катушки, ту обкладку конденсатора, которая выполнена в виде слоя медного провода, причем совершенно безразлично, заземлить ли одновременно оба конца этого провода или же только один.
Подавляющее большинство фабричных и любительских приемников монтируется на металлическом, обычно стальном, шасси. Металлическое шасси используется как проводник, соединяющий все точки схемы, которые должны подключаться к гнезду «Земля». Таких точек в любом приемнике очень много, и поэтому использование шасси позволяет сильно упростить монтаж — вместо того чтобы ту или иную точку соединять с гнездом «Земля», эту точку соединяют с шасси, которое, в свою очередь, соединяют с гнездом «Земля». Поэтому если в дальнейшем вы встретите указание о том, что какую-либо точку нужно заземлить, то ее нужно просто соединить с металлическим шасси (лист 97).
Слова «заземлить», «заземленный», «заземление» можно встретить и при описании различных устройств (например, усилителей, магнитофонов, измерительных приборов, в которых даже нет гнезда «Земля», но и в этом случае под заземлением имеется в виду соединение той или иной детали с шасси.
В нашем приемнике шасси сделано из дерева и фанеры, но по краю каждой панели и, в частности, панели ВЧ проходит толстый, предварительно залуженный медный провод, так называемая земляная шина, или земляной провод. Он-то и выполняет роль металлического шасси. К земляному проводу подключают все цепи, которые нужно заземлить. На схемах этот провод не показан, а подключение к нему обозначается как обычное соединение с металлическим шасси. Крепление земляного провода осуществляется с помощью жестяных лепестков.
К земляному проводу подключается и корпус конденсатора настройки, а следовательно, соединенный с корпусом ротор этого конденсатора. Статор одной из секций соединяется с контактом бп — переключателя диапазонов, статор второй секции в детекторном приемнике никуда не подключается.
Несколько слов следует сказать о переключателе. Наиболее широкое распространение получили переключатели, состоящие из фиксатора и нескольких керамических или гетинаксовых панелей (галет), на которых и закреплены контакты (чертеж 7, А). В нашем приемнике такой галетный переключатель диапазонов закрепляется на небольшой фанерной панели, которая, в свою очередь, крепится к деревянной раме. Рядом с переключателем на панели закреплены два переменных сопротивления, которые будут использованы в ламповых приемниках.
Нам необходим переключатель с четырьмя секциями на три положения, то есть для трех диапазонов. Если попадется переключатель на большее число положений или с большим числом секций, то это не беда — некоторые из них можно будет просто не использовать. Если удастся достать переключатель с тремя секциями, то можно применить и его, отказавшись от индуктивной связи с антенной (см. стр. 120).
Если вам не удастся достать фабричный переключатель, то его можно сделать самому (чертеж 7, Б—3). Самодельный переключатель имеет четыре подвижных контакта (3), сделанных из жести и закрепленных на вращающейся фанерной крестовине (Г). Четыре группы неподвижных контактов (Е) закреплены на фанерной панели. Каждый неподвижный контакт можно сделать из белой жести или в виде трех-четырех витков медной проволоки диаметром 0,6–0,8 мм, тщательно очищенной от изоляции. Под неподвижные контакты подкладываются маленькие бруски из твердых пород дерева, а в подвижных контактах делают вмятину, благодаря чему и осуществляется фиксация переключателя в нужных положениях (Ж). Подключение подвижного контакта к соответствующему лепестку переключателя осуществляется с помощью мягкого многожильного провода.
Следует сразу же заметить, что самодельный переключатель изготовить сравнительно сложно, а высокой надежностью он не отличается. Поэтому делать переключатель самому следует лишь в самом крайнем случае.
Важным узлом приемника является шкальное устройство, которое нужно изготовить сразу же, не дожидаясь окончания всех работ, так как шкала будет использоваться нами при настройке всех приемников, в том числе и детекторного. Сама шкала (чертеж 6) аккуратно и точно вычерчивается цветной тушью на плотной бумаге и наклеивается на подшкальник, сделанный из белой жести. На ось конденсатора настройки плотно насаживается большой шкив, который можно сделать из трех тонких фанерных дисков или какой-нибудь круглой жестяной крышки. Для крепления шкива на ось конденсатора плотно надевается жестяная трубка, к которой уже припаивается жестяной шкив или жестяная заклепка, стягивающая отдельные диски фанерного шкива. После того как шкив закреплен и установлена шкала, на ось конденсатора настройки надевают стрелку, также сделанную из жести. Шкив при помощи тросика (капроновая нить с пружинкой) связан с осью настройки, которая может выполняться по-разному.
В приемнике с самодельным переключателем диапазонов лучше всего применить ось от сгоревшего переменного сопротивления вместе с деталями ее крепления — резьбовой втулкой и гайками. Такую же ось можно применить и в приемнике с фабричным переключателем, но при этом на передней панели будет уже четыре ручки управления. Для того чтобы сохранить три ручки, одну из них, а именно среднюю, нужно сделать сдвоенной. Для этого на ось переключателя диапазонов следует надеть свободно вращающуюся трубку, на которую будет одеваться тросик, идущий к шкиву (чертеж 6). Ручка настройки в этом случае применяется специальная — с большим внутренним отверстием.
На панели ВЧ заранее устанавливается панелька для усилительной лампы. Эта панелька будет использована во всех ламповых приемниках, а предварительная установка ее избавит от необходимости проводить сложные столярные работы на уже смонтированной панели. Кроме того, лепестки ламповой панели при монтаже детекторного приемника можно будет использовать как опорные точки для крепления проводов.
Панелька может быть пластмассовая или керамическая (керамическая лучше) и обязательно должна иметь девять гнезд (не считая центрального отверстия, если таковое имеется). Это замечание очень важно, так как для многих ламп применяются панельки, у которых имеется семь гнезд, или панельки с восемью гнездами для ламп более старых серий. Панельки с девятью гнездами предназначены для ламп: 6И1П, 6П14П, 6Н2П и др. (лист 109).
На краю панели ВЧ закреплено пять сравнительно длинных лепестков из белой жести, образующих так называемую «гребенку» (гребенка Г1). Такая же гребенка будет установлена на соседней панели (гребенка Г2), и, спаяв соответствующие лепестки гребенок, можно будет соединить панели между собой.
Вот мы и рассмотрели основные особенности конструкции нашего приемника, и теперь можно приступать к его монтажу.
Опытные любители производят монтаж, пользуясь лишь принципиальной схемой, но для начинающих удобно составить еще и монтажную схему, из которой видно примерное размещение всех деталей и их взаимное соединение.
На чертеже 2 показана монтажная схема нашего детекторного приемника. Чтобы вам легче было пользоваться монтажной схемой и согласовывать ее с принципиальной, на обеих схемах одинаковыми индексами (красным цветом) обозначен целый ряд монтажных точек. Пользуясь принципиальной, а тем более монтажной схемой, можно легко смонтировать, или, как часто говорят любители, «спаять», приемник.
Правильно собранный приемник при подключении антенны и заземления должен сразу же заработать: поворачивая ручку настройки, вы сможете принять местную станцию. В том, что станция в данный момент работает, можно убедиться, приняв ее на обычном ламповом приемнике.
Если окажется, что приемник не работает, то нужно прежде всего спокойно и внимательно проверить монтаж и детали.
Чаще всего могут встретиться такие неисправности: плохие контакты в гнездах антенны, заземления или телефонов; ненадежные контакты в монтаже из-за плохой пайки; ненадежные контакты в переключателе из-за его загрязнения, незаметного на глаз; обрыв монтажного провода (имеется в виду одножильный медный провод в хлорвиниловой изоляции); короткое замыкание между статором и ротором конденсатора настройки или между обкладками конденсатора фильтра; неисправность в полупроводниковом диоде; обрыв в контурной катушке или обмотке головных телефонов. Все эти неисправности сводятся к двум основным: обрыву цепи и короткому замыканию, а их легко обнаружить с помощью любого омметра или пробника, состоящего из батарейки и какого-нибудь индикатора — стрелочного прибора (лист 98) или даже обычной лампочки. Простейший пробник для проверки цепей можно собрать из батарейки и телефона. Если подключить такой пробник к исправной цепи, то в момент подключения в телефонах будет слышен сильный щелчок; при оборванной цепи щелчка не будет. При проверке конденсаторов малой емкости — наоборот, наличие сильных щелчков будет свидетельствовать о коротком замыкании между пластинами.
Простейшими пробниками можно пользоваться лишь в крайнем случае. Лучше всего для налаживания приемника иметь авометр — универсальный измерительный прибор, в который входит амперметр, вольтметр и омметр (отсюда название «авометр»). Наша промышленность выпускает много различных типов авометров: ТТ-1, ТТ-2, Ц-20, Ц-315 и др. Любой из них может оказаться чрезвычайно полезным как при налаживании самодельных детекторных и ламповых приемников, так и при проверке и ремонте промышленной радиоаппаратуры — магнитофонов, приемников, телевизоров, радиоузлов и т. п.
Когда вы убедитесь в работоспособности построенного детекторного приемника, а для этого достаточно принять хотя бы одну радиостанцию, можно приступить к его наладке. Она в основном сведется к тому, что изменением индуктивности катушек (это осуществляется перемещением подвижных секций или подстроечных сердечников, а в крайнем случае, подбором числа витков катушек), а также подгонкой емкости подстроечных конденсаторов нужно будет добиться совпадения положения стрелки по шкале с частотой принимаемой станции.
Так, например, если идет прием на частоте 150 кгц (2000 м), а стрелка, связанная с ротором конденсатора настройки, показывает частоту 200 кгц (1500 м), то значит, параметры контура подобраны неправильно и его граничные резонансные частоты, то есть частоты, соответствующие полностью введенному и полностью выведенному ротору конденсатора настройки, смещены относительно границ нужного нам диапазона в сторону более низких частот.
Как мы уже отмечали (лист 51), участок длинноволнового диапазона, где работают радиовещательные станции, ограничен частотами: минимальной 150 кгц (2000 м) и максимальной 420 кгц (740 м). Предположим, что в нашем приемнике границы сдвинуты на 50 кгц, то есть он может принимать станции, работающие на частотах от 100 до 370 кгц. Это значит, что приемник будет работать на участке 100–150 кгц, где вещательных станций нет, и, наоборот, станции, работающие на участке 370–420 кгц, приемник принимать не будет. Действительно, когда мы установим стрелку на шкале в крайнее положение, соответствующее частоте 420 кгц, контур фактически будет настроен на частоту 370 кгц, и настроиться на более высокую частоту нам не удастся, так как для этого нужно уменьшить емкость контура, а ротор конденсатора уже выведен до конца.
В другом конце диапазона будет наблюдаться обратная картина: ротор еще полностью не введен и стрелка указывает на частоту 200 кгц, а контур уже настроен на самую низкую из нужных нам частот — 150 кгц. Если мы будем и дальше увеличивать емкость контура, вводя ротор конденсатора, то будем настраивать контур на еще более низкие частоты 140, 130… 100 кгц, где радиовещательные станции, как уже отмечалось, не работают.
Можно ли избавиться от всех этих недостатков? Можно, и сравнительно просто.
Давайте вновь передвинем стрелку на деление «200 кгц» и таким образом настроимся на станцию, работающую на частоте 150 кгц. Теперь попробуем, постепенно вывинчивая сердечник из контурной катушки, уменьшать ее индуктивность. Вы, конечно, не забыли, что резонансная частота контура в одинаковой степени зависит от его индуктивности и емкости. Если мы уменьшаем индуктивность и хотим сохранить настройку на станцию, то нам придется увеличивать емкость контура, то есть вводить ротор конденсатора настройки. При этом, естественно, стрелка будет перемещаться в сторону более длинных волн, все ближе к частоте 150 кгц, на которой и работает наша станция. Уменьшать индуктивность контура нужно до тех пор, пока точная настройка на станцию не будет соответствовать нужному положению стрелки на шкале.
Устанавливая нужные нам границы резонансной частоты контура, можно пользоваться и подстроечным конденсатором, так как общая емкость контура равна сумме емкостей конденсаторов настройки и подстроечного. Действительно, если мы будем уменьшать емкость подстроечного конденсатора, то, для того чтобы сохранить резонансную частоту неизменной, нам придется увеличивать емкость конденсатора настройки, то есть вводить его ротор. А это значит, что стрелка будет перемещаться по шкале в нужном направлении — в сторону более длинных волн.
Настраивая входной контур детекторного приемника, следует помнить общее для настройки всех контуров правило: при выведенном роторе резонансную частоту контура подгоняют с помощью подстроенного конденсатора, а при введенном роторе — путем изменения индуктивности катушки (рис. 57, 58, лист 99).
Начинать удобнее с длинноволнового участка диапазона (ротор введен, подбирается индуктивность), после этого следует перейти к подгонке частоты на коротковат новом участке (ротор выведен, подбирается емкость подстроечного конденсатора), затем желательно вернуться обратно на длинноволновый участок и в заключение еще раз произвести подстройку на коротковолновом участке. Конечно, в детекторном приемнике почти никогда нет возможности выполнить всю эту программу из-за весьма ограниченного числа принимаемых станций. Поэтому в таком приемнике желательно лишь приближенно подобрать индуктивность катушек. Более точную подстройку контуров мы произведем в ламповых приемниках, где изготовленные нами катушки будут использованы без изменений. Следует помнить, что во время настройки приемника антенну уже нельзя подключать непосредственно к контуру, так как собственная емкость антенны может сильно его расстроить.
Собрав и наладив двухдиапазонный детекторный приемник, вы испытаете огромное, ни с чем не сравнимое удовлетворение. При наличии хорошей наружной антенны вечером, а особенно ночью, когда условия распространения длинных и средних волн улучшаются, вы наверное сможете принять несколько сравнительно дальних станций. Настраиваясь то на одну, то на другую станцию, вы практически почувствуете, какая замечательная вещь колебательный контур.
Но первые же эксперименты с детекторным приемником покажут вам, что с помощью одного колебательного контура многого не добьешься: приемник работает тихо, число принимаемых станций невелико, сигналы мешающих станций зачастую ослабляются явно недостаточно.
На первый взгляд может показаться, что, применив в детекторном приемнике несколько одинаковых колебательных контуров, можно улучшить его избирательность и чувствительность. Что касается избирательности, то это действительно так: если в приемнике имеется два контура, каждый из которых ослабляет мешающую станцию в три раза, то общая избирательность будет равна девяти. Увеличение числа контуров — это один из основных путей повышения избирательности. Что же касается повышения чувствительности, то здесь увеличение числа контуров не дает эффекта.
Если в детекторном приемнике будет два контура, то энергия, поступающая из антенны, распределится между ними, и поэтому ток в каждом из контуров будет меньше, чем у одноконтурного приемника. И, к какому из этих двух контуров мы ни подключали бы детектор, мы не только не улучшим, но даже ухудшим чувствительность по сравнению с одноконтурным приемником.
Для того чтобы обеспечить громкоговорящий прием большого числа радиостанций, необходимо в миллионы и миллиарды раз повысить мощность принятого сигнала, подводимого к антенне. Такое огромное усиление мощности позволяет получить полупроводниковые триоды и электронные лампы, с работой которых мы познакомимся в следующей главе.