Смертоносные нейтрино
ВОПРОС: Как близко надо находиться к сверхновой звезде, чтобы получить смертельную дозу нейтринного излучения?
– Др. Дональд Спектор
ОТВЕТ: Словосочетание «смертельная доза нейтринного излучения» звучит весьма странно. Увидев его в первый раз, я даже пришел в некоторое замешательство.
Если вы не имеете отношения к физике, то эти слова вас, может быть, не удивят, поэтому вот вам контекст, чтобы объяснить, почему эта мысль так удивляет меня.
Нейтрино – это призрачные частицы, которые еле-еле взаимодействуют с окружающим миром. Посмотрите на вашу руку – около миллиарда нейтрино, излученных Солнцем, проходят через нее в эту самую секунду.
Хорошо, можете перестать смотреть на свою руку.
Причина, по которой вы не замечаете поток нейтрино, заключается в том, что эти частицы по большей части игнорируют обычную материю. В среднем только один нейтрино из этого огромного потока раз в несколько лет столкнется с одним из атомов вашего тела.
Нейтрино настолько призрачные создания, что вся Земля для них проницаема: практически весь солнечный поток нейтрино проходит через нее, не испытывая никаких затруднений и без всяких последствий. Чтобы отслеживать нейтрино, люди строят гигантские резервуары, в которых содержатся сотни тонн материала, в надежде зафиксировать след единственного нейтрино, летящего от Солнца.
Это значит, что, когда ускоритель частиц (который производит нейтрино) хочет отправить поток этих частиц на детектор, который находится где-то в другом месте, ускорителю нужно просто прицелиться в сторону этого детектора, даже если тот находится на обратной стороне Земли!
Поэтому слова о «смертельной дозе нейтринной радиации» звучат странно – здесь объединены несопоставимые масштабы. Это как английская идиома «сбить с ног перышком» или фраза «футбольный стадион, до верху полный муравьев». Если у вас есть некоторые познания в математике, то это можно сравнить с формулой ln([(x))]e – не то чтобы в ней совсем не было смысла, просто нельзя себе представить ситуацию, в которой она бы применялась.
Ко всему прочему, не так-то просто произвести достаточно частиц нейтрино, чтобы заставить хотя бы одну из них взаимодействовать с материей, – трудно представить себе условия, при которых их будет так много, чтобы они могли причинить вам вред.
Сверхновые как раз предоставляют нам такие условия. Задавший этот вопрос доктор Спектор, физик из колледжа Хобарт-и-Уильям-Смит, поделился со мной простым правилом оценки размера сверхновых: сколь большими они бы ни казались, в реальности они еще больше.
Вот пример для того, чтобы вы могли оценить масштаб явления. Как вы думаете, что будет ярче (с точки зрения количества энергии, доставленной на сетчатку вашего глаза): сверхновая, находящаяся на том же расстоянии от Земли, что и Солнце? Или вспышка взрыва водородной бомбы, прижатой прямо к вашему глазу?
Вы не могли бы взорвать ее поскорее? Она тяжелая.
Судя по правилу доктора Спектора, сверхновая должна быть ярче. И она действительно ярче… в миллиард раз.
Вот почему этот вопрос очень интересен – сверхновые невообразимо огромны, а нейтрино невообразимо бестелесны. В какой момент эти две невообразимости уравниваются настолько, чтобы воздействовать на человека?
Статья эксперта по радиации Эндрю Карама дает нам ответ. Она показывает, что во время взрыва некоторых сверхновых при коллапсе ядра может высвободиться 1057 нейтрино (по одному на каждый протон звезды, который при коллапсе обратился в нейтрон).
По расчетам Карама, доза нейтринной радиации на расстоянии в 1 парсек будет составлять половину нанозиверта (нЗв), или 1/500 от дозы, которую вы получаете, съев один банан.
Смертельная доза радиации составляет примерно 4 зиверта (Зв). Используя закон обратных квадратов, мы можем рассчитать дозу радиации:
х = 0,00001118 парсек = 2,3 астрономической единицы (а.е.).
Это чуть больше, чем расстояние от Солнца до Марса.
Коллапс ядра происходит у гигантских звезд, так что если бы вы наблюдали за сверхновой с такого расстояния, вы, скорее всего, находились бы где-то во внешних слоях звезды, из которой она возникла.
Коллапс GRB 080319B был самым драматичным когда-либо наблюдавшимся событием – особенно для тех, кто парил рядом с ней на доске для серфинга.
Угроза нейтринного облучения позволяет осознать истинный размер сверхновых. Если бы вы наблюдали сверхновую на расстоянии одной астрономической единицы – и каким-то образом не сгорели бы, не испарились и не превратились в какую-то экзотическую разновидность плазмы, – даже поток призрачных нейтрино был бы достаточно плотным, чтобы вас убить.
Если перышко летит достаточно быстро, оно действительно может сбить вас с ног.