Книга: Научи свой мозг работать
Назад: Мозг: археологические раскопки
На главную: Предисловие

«Электропроводка» мозга

 

До настоящего момента мы рассматривали форму, структуру и историю развития мозга, но все еще не ознакомились с принципами его работы.
Наверное, вы уже знаете, что мозг является гораздо более сложным электроприбором, чем любая электросхема. Но мозг также взаимодействует с химическими веществами, используя крошечные компоненты для передачи информации, контроля настроения и связи с другими органами. Уяснив несколько принципов работы мозговой «электропроводки», вы сможете лучше разобраться с более сложными темами, освещенными в этой книге.

 

Нейроны
Мозг содержит сотни миллиардов нервных клеток. Эти клетки подразделяются на две группы: нейроны (которым уделяется основное внимание) и глиальные клетки, также играющие важную роль, значение которых часто недооценивают.
Нейроны передают электрические импульсы через мозг и другие органы. Данные разнятся, но наиболее распространенные расчеты показывают, что вы обладаете 100 млрд нейронов (если хотите польстить своему самолюбию, сравните их количество с 300 тыс. нейронов в мозге скромной мушки дрозофилы). Удивительно, что количество глиальных клеток, обеспечивающих питание, защиту, вывод отходов, ускорение и выполняющих другие поддерживающие функции для получающих всю славу нейронов, в 10 раз больше (рис. 6).
Рис. 6

 

При ближайшем рассмотрении нейрон напоминает представителя некой футуристической флоры. Он получает сигналы с помощью древоподобных разветвлений, называемых дендритами, и затем посылает импульсы по напоминающим тончайшие трубки образованиям, аксонам. Благодаря совместному действию нескольких миллиардов подобных импульсов вы воспринимаете симфонию, трактат по юриспруденции или очередной эпизод сериала.
ПРИМЕЧАНИЕ
Изображение нейронов на рис. 6 не совсем пропорционально точно. В реальности тело клетки (верхняя левая часть) гораздо меньше, а дендриты, аксоны и их окончания простираются гораздо дальше.
Синапс
Настоящее волшебство происходит, когда электрические импульсы достигают окончания нейрона. В этот момент нейрон выпускает пучок химических элементов в небольшое отверстие — синапс. Эти химические элементы, известные как нейротрансмиттеры, проникают через синапс и практически плывут по мозговой жидкости в направлении дендрита следующего нейрона. Следующий нейрон реагирует выпуском собственного нервного импульса. Так сигнал проходит через мозг, передаваясь от одного нейрона к другому (рис. 7).
Как вы уже, наверное, догадались, приведенное выше описание этого сложнейшего процесса внутри черепа сильно упрощено. Перечислим причины сложности системы «электропроводки» мозга.
• Мозг использует различные виды нейротрансмиттеров д ля взаимодействия с различными видами нейронов.
Данные указывают на то, что мозг представляет собой своего рода массу, состоящую из химических элементов и использующую более 100 различных веществ для поддержания связи между нейронами.
Рис. 7

 

• Среднестатистический нейрон связан с несколькими тысячами других нейронов. Эю означает, что тысячи нейронов могут одновременно оказывать влияние на определенный нейрон, заставляя его посылать нервный импульс. И таким же образом один нейрон может передавать сигналы тысячам своих собратьев. Из всего вышесказанного можно сделать вывод о чрезвычайной подвижности электрической системы головного мозга.
• Нейротрансмиттеры не только побуждают нейрон к посылу электрического импульса, но могут также препятствовать его передаче.
• Нейротрансмиттеры служат не только для передачи сигналов между нейронами. Они могут осуществлять функции нейромодуляторов и выполнять в этом качестве множество задач. Например, нейромодуляторы влияют на работу нейронов, изменяя их чувствительность, активизируют производство новых белков и, проникая в крошечные синаптические входы, влияют на работу целых областей мозга. Многие химические элементы головного мозга могут в определенных случаях действовать как обычные ней- ротрансмиттеры и как более мощные нейромодуляторы.
ПРИМЕЧАНИЕ
Нейромодуляторы оказывают влияние на память, обучение и контролируют настроение. Например, принцип работы антидепрессантов заключается в повышении содержания в мозге серотонина, действующего как нейромодулятор. Данное изменение влияет на работу миллиардов нейронов. Влияние это еще не изучено до конца даже самыми передовыми учеными.
Если бы вы могли отделить маленький кусочек студенистой мозговой ткани и исследовать ее с помощью микроскопа, то обнаружили бы массу тесно переплетенных в невиданные узоры нейронов. Подсчитано, что общее число пересечений нейронов (а оно равняется количеству синапсов) приближается к немыслимой сумме в десятки триллионов. По этой причине человеческий мозг часто описывают как наиболее сложный объект во вселенной. Это должно вам польстить.

 

Забавные факты
Что общего между пластической

 

хирургией и сосисками
Многие из самых страшных смертельных ядов действуют посредством вмешательства в работу синапса. Одним из них является боту- линический токсин, производимый бактериями Clostridium botulinum. Ботулинический токсин блокирует действие определенных нейротрансмиттеров. В результате нейроны теряют способность взаимодействовать друг с другом, и мозг стремительно теряет возможность передавать сигналы другим органам.

 

Ничтожно малая доза ботулинического токсина может привести к смерти от паралича (при потреблении некачественных консервов тунца) или устранить морщины (при введении в мышцы лица под более привычным названием Botox). В любом случае ботулинический токсин является одним из смертельнейших ядов, известных человечеству. Также это единственный нейротоксин, названный в честь известного мясного продукта (Botulus — латинское название сосиски, которая также может содержать смертельные дозы ботулина при несоблюдении норм приготовления).
Яды — не единственные вещества, оказывающие влияние на нейротрансмиттеры. Многие аптечные лекарственные средства действуют, видоизменяя химические связи между нейронами.

 

Нервная система
Часто мы воспринимаем человеческий мозг как отдельное устройство, своего рода биологический компьютер, состоящий из воды, жировых клеток и ДНК. Но на самом деле мозг — это разветвленный орган, влияние которого выходит далеко за пределы нашей головы. Фактически длинные щупальца дендритов и аксонов простираются из мозга во все уголки человеческого тела, объединяя каждую его мышцу и орган в единую нервную систему.
Вы уже узнали, как нейроны передают информацию между собой. Но нейроны на окраинах нервной системы получают сигналы от источников другого рода. В зависимости от своего вида они передают импульс, реагируя на изменения температуры, давления (обеспечивая тем самым осязание и слух), химические вещества (вкус и обоняние), свет (зрение). Эти сигналы передаются через позвоночный столб в мозг. Например, посредством передачи сигнала по двум гигантским нейронам мозг получает информацию о прикосновении к стопе.
Таким же образом исходящая цепь нейронов позволяет мозгу направлять сигналы в самые отдаленные уголки тела. Когда мозг хочет осуществить контроль какой-либо части тела — сознательно или бессознательно, — он просто задействует необходимую комбинацию нейронов. Самый крайний в цепи нейрон провоцирует выброс химических элементов, запускающих нужный процесс в следующей клетке.
Например, если вам наступили на ногу во время танца, ближайшие нейроны реагируют на деформацию кожи. Они передают информацию мозгу, который воспринимает боль и включает цепь нейронов, заставляющих вас отдернуть ногу.

 

Разумеется, на самом деле этот процесс гораздо сложнее. Даже простейшая реакция задействует огромное количество различных нейронов. Например, когда вы отдергиваете ноту, используя определенную группу мышц, мозг расслабляет другие мышцы, чтобы избежать повреждений. Более того, нервная система действует на множество нейронов в определенной части тела. Вот почему человечество награждено множеством болевых ощущений. Тупая боль поврежденной ткани передается нейроном, реагирующим на изменение химических элементов, острая боль от ожога — нейронами, реагирующими на высокие температуры, а боль от пореза вызвана действием нейронов, реагирующих на порезы, и т. д.
ПРИМЕЧАНИЕ
Импульсы, передаваемые нейронами, проходят по позвоночному столбу различными путями и иногда передвигаются с различной скоростью. Пульсирующая боль передается медленнее всего, поэтому после удара ступней о дверной косяк у вас будет немного времени на то, чтобы вообразить себе будущие болевые ощущения.
Эндокринная система
Как вы уже поняли, мозг управляет работой всего организма, задействуя для этого различные виды нейронов. Однако нейроны простираются далеко не повсеместно и реагируют далеко не на все взаимодействия. Именно поэтому у мозга существует еще одна система, позволяющая осуществлять контроль над организмом, — эндокринная.
Эндокринная система состоит из группы небольших органов, называемых железами. Эти железы творят настоящее волшебство, выделяя различные химические вещества, гормоны, в кровь. Гормоны вызывают реакции в других органах. Например, щитовидная железа контролирует скорость обмена веществ, надпочечники — реакцию «бороться или бежать?» (они же виноваты в том, что вы приходите в ярость, когда внедорожник занимает последнее парковочное место у торгового центра в канун Рождества) — рис. 8.
Рис. 8

 

Гипофиз
Для взаимодействия с железами организма мозг выделяет гормоны в кровь. Но эту задачу усложняет гематоэнцефалический барьер, который отделяет мозг от системы кровообращения. Он препятствует проникновению большинства токсинов, бактерий, вирусов и гормонов в мозг. Единственные частицы, способные проникнуть через этот барьер, чрезвычайно малы или растворимы в липидах. К счастью, кислород, алкоголь и кофеин входят в их число. Другие компоненты используют для проникновения специальные трансмиттеры (например, глюкоза — молекула сахара, обеспечивающая энергетическое питание мозга).
Гематоэнцефалический барьер препятствует не только проникновению веществ в мозг, но и проникновению веществ из мозга в систему кровообращения. Чтобы преодолеть это препятствие, мозг использует гипофиз. Эта железа размером с вишню расположена под мозгом, что позволяет ей посылать гормоны в кровь каждый раз при получении соответствующей команды.
ПРИМЕЧАНИЕ
Гипофиз часто называют главной железой, так как он производит гормоны, управляющие деятельностью других желез. Таким образом, мозг может использовать гипофиз для осуществления контроля состояния всего организма.
Хотя, возможно, вы едва ли слышали о существовании гипофиза, он уже оказал сильное влияние на вашу жизнь. Мозг использует гипофиз для производства гормонов, вызывающих изменения в организме в ключевые моменты жизни. Эти гормоны контролируют рост и половое развитие (см. главу 9), родовые схватки и производство молока для лактации (очевидно, что ваш мозг отвечает за гораздо большее число процессов, чем можно было ожидать).
Часть мозга, контролирующая гипофиз, называется гипоталамусом.
Мозг управляет не только нервной, но и эндокринной системой. И его главный инструмент управления — это гипофиз.

 

Практическая сторона науки о мозге
Значение нейронов

 

Изучение анатомического строения головного мозга — отличное занятие для отрешенных от мира студентов-медиков, располагающих массой свободного времени. Но даже для простых людей изучение нейронов и синапсов с практической стороны может оказаться полезным, так как, обладая этими знаниями, проще понять множество связанных с деятельностью мозга процессов. Простым примером являются чувствительность и привыкание. Чувствительностью объясняется то, что вы вздрагиваете, когда кто-то роняет ручку в относительно тихом зале, а привыканием — ваша способность спокойно обедать, когда по соседству строительная компания возводит новый дом. Изучив животных, мозг которых довольно примитивен, например гигантских кальмаров, ученые узнали, что эти механизмы имеют нейробиологическую основу (в частности, механизмы, с помощью которых нейроны открывают и закрывают рецепторы, чтобы повысить или снизить чувствительность к действию нейротрансмиттеров).
Приведем несколько более сложных тем, изучив которые вы сможете лучше разобраться в системе «электропроводки» мозга.
Сон. Из главы 3 вы узнаете, как изменяется активность нейронов во время сна и каково значение этих изменений.
Память. В главе 5 вы прочтете, что мозг не складирует воспоминания в отдельных емкостях, а постоянно меняет структуру своей «проводки», добавляя новые и удаляя ненужные синапсы.
Влечение. Из главы 6 вы узнаете, как мозг радует себя, направляя нужные нейротрансмиттеры жаждущим удовольствия нейронам. (Такой же механизм лежит в основе многих наркотических зависимостей. Например, опиоиды, подобные героину, воздействуют на специфические рецепторы человеческого мозга. Как правило, эти нейроны активизируются лишь по команде мозга, чтобы облегчить боль или ввести организм в определенное состояние, но по какому-то комическому стечению обстоятельств мак содержит вещества, настолько напоминающие нейротрансмиттеры, что они способны захватывать ключевые позиции в микросхеме мозга.)

 

Назад: Мозг: археологические раскопки
На главную: Предисловие