Глава 31
Разрыв в энергосбережении
В XIX в., когда все больше людей переезжали из сельской местности в города, городская жара бывала нестерпимой. «В предчувствии бедствия» и «Восхода солнца сегодня ожидают с ужасом» – такими были газетные заголовки в 1878 г., когда жаркая погода установилась на большей части территории США. В 1901 г., во время одного из самых продолжительных периодов жары за всю историю США, на востоке страны и на Среднем Западе погибло несколько тысяч человек. Местные больницы перестали направлять кареты скорой помощи к жертвам теплового удара, поскольку даже лошади падали замертво, не выдерживая жары. Жара в 1901 г. была настолько сильной, что Нью-Йоркская фондовая биржа впервые в своей истории разрешила трейдерам в торговом зале снять пиджаки1.
Традиционно здания строились так, чтобы удовлетворять потребность человека в крыше над головой, отоплении, защите от жары и освещении. На юго-западе страны, в таких фортах, как Аламо, стены зданий возводили из самана – кирпича воздушной сушки, чтобы в жаркие дни в помещениях было прохладно, а в холодные ночи – тепло. В городах каменные здания проектировались с утопленными окнами, чтобы в помещения попадало поменьше солнца, и с центральным внутренним двориком, чтобы внутренние помещения получали достаточно света и свежего воздуха. Но по мере того, как численность населения в городах возрастала и здания росли в высоту, а также по мере накопления знаний использовались все более сложные способы организации отопления, охлаждения, освещения и электроснабжения.
Сегодня в США жилой и коммерческий секторы (в том числе системы электроснабжения зданий) потребляют около 40 % всей производимой энергии и три четверти электроэнергии, а также выделяют значительные объемы углекислого газа. В Великобритании на жилые и коммерческие здания приходится 50 % всей потребляемой энергии. В Китае доля зданий в потреблении энергии значительно меньше, но ситуация быстро меняется, поскольку в стране ежегодно возводится не менее 10 млн новых жилищных единиц. Теперь задача не только в том, чтобы строить пригодные для жилья здания, но и в том, чтобы использовать всю поступающую в них энергию более эффективно. Это требует изучения конструкции, свойств и разницы между потенциальной эффективностью и реальностью – того, что называют разрывом в энергосбережении2.
Искусственно создаваемая погода
В течение XIX в. изобретатели и бизнесмены пытались найти способ регулирования температуры и влажности – факторов, которые могут оказывать негативное воздействие на промышленные процессы. В 1890-х гг. появились первые холодильные установки, призванные улучшить санитарные условия в индустрии переработки мяса в Чикаго. После продолжительного периода жары летом 1901 г. руководство Нью-Йоркской фондовой биржи осознало, что необходимо сделать нечто большее, чем просто разрешить биржевым трейдерам снимать пиджак. Была установлена система охлаждения воздуха, но она функционировала не очень хорошо, а воздух был влажным и некомфортным. Одного охлаждения было недостаточно, нужно было также регулировать влажность. Но как?3
Уиллис Кэрриер, 25-летний инженер из Анголы, штат Нью-Йорк, обладал неплохими познаниями в области машиностроения, математическим даром и умением мысленно представлять решения. Работая в компании Buffalo Forge Company, он помог издателю журналов найти способ регулировки влажности, из-за которой на страницах время от времени появлялись пятна типографской краски.
Но самого Кэрриера это решение не устраивало. Влажность (точнее, обеспечение определенного содержания водяного пара в воздухе) по-прежнему занимала его мысли. Как-то вечером, ожидая поезд на окутанной туманом платформе станции в Питтсбурге, он сделал открытие. Прохаживаясь по платформе, Кэрриер заметил, что, несмотря на туман, воздух довольно сухой. Он стал размышлять о природе тумана, и его, что называется, осенило.
Озарение привело к получению патента № 808897 на «устройство для обработки воздуха», которое нагревало или охлаждало воду в целях регулирования температуры и влажности воздуха, а также его очистки. Но идею «искусственного создания погоды» подняли на смех4.
Патент № 808897, однако, нашел практическое применение. Он стал основой современного кондиционера и позволил решить одну из самых трудноразрешимых бытовых проблем человечества. В 1911 г. Кэрриер представил на суд общественности формулу, которая стала «Великой хартией вольности» для индустрии кондиционирования воздуха. В 1922 г. Кэрриер установил систему кондиционирования воздуха в театре Grauman’s Metropolitan в Лос-Анджелесе. В 1924 г. система кондиционирования воздуха появилась в одном из универмагов Детройта, где в дни распродаж, когда начиналось столпотворение, некоторые падали в обморок от духоты. Первое офисное здание, оснащенное системой кондиционирования воздуха, было возведено в Сан-Антонио, штат Техас, в конце 1920-х гг. Идея кондиционирования воздуха постепенно распространилась по всему миру. В 1937 г. между Дамаском и Багдадом начал курсировать автобус с кондиционером. После Второй мировой войны Хьюстон, где лето очень жаркое и влажное, благодаря кондиционированию воздуха стал «нефтяной столицей мира» и четвертым по величине городом США. В 1950-е гг. кондиционеры стали частью стандартного набора электроприборов в домах в более теплых штатах США5.
Небоскребы, возведенные по всему миру в послевоенные десятилетия, без систем кондиционирования воздуха и центрального отопления были бы непригодными для жизнедеятельности.
Благодаря распространению кондиционирования воздуха изменилось направление развития мировой экономики и стало возможным ее расширение. Ли Куан Ю, основатель и бывший премьер-министр современного Сингапура, как-то назвал систему кондиционирования воздуха «самым важным изобретением XX в.», поскольку она позволила людям в тропических широтах работать с высокой производительностью. Министр окружающей среды Сингапура высказался более выразительно, заявив, что если бы не кондиционирование воздуха, «в Сингапуре сегодня не работали бы на высокотехнологичных заводах, а сидели бы под кокосовыми пальмами»6.
Энергия и электричество обеспечили комфорт в жилом и коммерческом секторах. Все было хорошо, пока никто не задумывался о стоимости и доступности энергии, а также о парниковых газах. Но ситуация изменилась.
По одним оценкам, потенциал повышения эффективности использования энергии в зданиях составляет 15–20 %. По другим, он намного больше – 25 % в среднем по сектору и до 50 % в новых зданиях. Но реализовать этот потенциал непросто.
«Многие считают, что все самое простое уже сделано, – сказал профессор Леон Гликсман, который основал кафедру строительных технологий MIT. – Некоторые полагают, что все проблемы уже решены и делать что-то еще нет необходимости. Это одна из самых консервативных отраслей, с которыми я когда-либо сталкивался. Исследований и разработок здесь почти нет. Индустрия сильно фрагментирована, собрать людей очень сложно – все заняты своими делами. И к тому же многие не понимают, что единственного верного решения не существует»7.
Вместе с тем сегодня в этом секторе многое меняется, изменения затрагивают и строительство здания, и его эксплуатацию, и то, как в нем живут люди.
Приоритетное направление
Изменения начались в 1970-е гг., когда возникли перебои в поставках энергоресурсов и резко выросли цены энергоносителей. Результат роста цен на энергоресурсы был ожидаемым. Зимой в отопительный период терморегуляторы устанавливались на более низкую температуру, а летом в период кондиционирования – на более высокую. Домовладельцы устанавливали окна с двойным переплетом. Государственная политика, как на федеральном уровне, так и на уровне штата, стала нацеливать людей на энергоэффективность при помощи налоговых льгот, регулирования и предписаний. Была начата «война с нерациональным использованием энергии»8.
Энергокомпании стали продвигать идею энергосбережения при помощи программ повышения осведомленности и отправки на места специалистов по энергоаудиту, которые обследовали чердаки, измеряли толщину изоляции и проверяли печи, установленные в подвальных помещениях. Позже энергокомпаниями были внедрены программы управления энергопотреблением на стороне потребителя, помогавшие домовладельцам и операторам зданий снизить потребление энергии. В то же время производители под давлением обязательных стандартов и требований стали выпускать более энергоэффективные электроприборы. Федеральное правительство также стало присуждать «энергетические звезды» электроприборам, характеристики которых были выше средних. Архитекторы и строители сосредоточились на более энергоэффективных конструкциях. «Энергосбережение стало приоритетным направлением, – отметил Ли Шиппер, сотрудник Стэнфордского университета. – Строители еще 30 лет назад не понимали, зачем нужны окна с двойным и тройным остеклением. Сегодня они знают зачем»9.
Гаджеватты
Но вот загадка: хотя энергосбережение стало приоритетным направлением, сегодня потребление энергии в жилом секторе США на 40 % выше, чем в 1970-е гг., а потребление энергии в коммерческом секторе почти удвоилось. Причины – рост и появление новинок. Существенно выросло количество частных домов, а также домов, оснащенных кондиционерами. Помимо этого, существенно увеличились размеры домов: жилая площадь среднего дома с 1970-х гг. выросла почти на 70 %. Потребление энергии на холодильник с 1993 г. уменьшилось вдвое, но потребление энергии холодильниками на дом практически не изменилось, поскольку во многих домах сегодня два холодильника10.
Еще одна причина увеличения потребления энергии в жилом секторе – так называемые «гаджеватты»: все больше электричества сегодня потребляется различными приспособлениями (гаджетами), которых в 1970-х гг. не существовало. В те годы 91 % потребления электроэнергии в домохозяйствах приходился всего на семь статей – кухонные плиты, внутреннее освещение, холодильники, морозильные камеры, водонагреватели, кондиционеры и отопление. На «прочее» оставалось лишь 9 %.
С тех пор доля статьи «прочее» выросла до 45 %. В нее входят некоторые из тех приборов, которые существовали в 1970-х, например посудомоечные машины и телевизоры. К ней относятся и все те устройства и приспособления, которые ныне стали неотъемлемой частью повседневной жизни, – компьютеры, принтеры, видеомагнитофоны, факсы, микроволновые печи, телефоны, кабельные сети, DVD-плейеры, смартфоны, планшетные компьютеры и прочие гаджеты, которые нужно подзаряжать.
Также все больше энергии и электричества потребляется высокотехнологичными офисными небоскребами. Информационные технологии привели к появлению новых комплексов – тысяч центров обработки данных по всему миру, в которых располагается в общей сложности более 15 млн серверов (а к 2020 г. их количество может превысить 120 млн). Эти центры требуют много электроэнергии для поддержания работы процессоров, памяти и других устройств, а также для организации вентиляции с целью отвода тепла, выделяемого серверами11.
Потенциал экономии энергии в зданиях специалист по экономике энергетики Лоренс Макович называет «разрывом в энергосбережении». Однако реализовать потенциал энергосбережения непросто. Здания служат 50, 75, 100 лет и даже больше. Их можно модернизировать, но только до определенного предела. Существенное влияние на время и средства, вкладываемые домовладельцами и операторами зданий в повышение энергоэффективности существующих построек, оказывает тарифная политика. Эти инвестиции оцениваются по доходности и альтернативам. «Вопросу оценки вариантов при инвестировании в энергоэффективность по сравнению с другими вложениями капитала часто не уделяется должного внимания, – говорится в отчете Всемирного экономического форума. – Вложения в энергоэффективность должны иметь рейтинг не ниже инвестиционного». Как и любым другим инвестициям, инвестициям в энергоэффективность приходится конкурировать с альтернативами12.
На пути к эффективности имеются барьеры и нефинансового характера. Один из них – отсутствие связи между интересами строительной компании и интересами конечного покупателя. Строительные компании, которые устанавливают изоляцию и оборудование и определяют толщину стен и качество окон, работают в соответствии с «техническими условиями». Для них главное – минимизировать стоимость, чтобы их дома покупали. Покупателям же домов приходится оплачивать счета за электроэнергию, и они заинтересованы в энергоэффективности. Но конструктивные решения строительной компании изменить или подкорректировать очень непросто. Аналогично у владельцев жилья, сдаваемого в аренду, нет стимула устанавливать более энергоэффективные электроприборы, поскольку платят за электроэнергию арендаторы.
Хронической проблемой здесь является недостаток осведомленности. Многие ли домовладельцы имеют представление о том, сколько средств они сэкономят благодаря утолщению изоляции или установке терморегулятора на более низкую температуру? Некоторые из этих проблем можно устранить путем регулирования, связанного с зонированием, и других требований, маркировки энергоэффективности электроприборов и распространения всесторонней информации. В секторе коммерческих зданий должное внимание и соответствующие измерения могут принести неожиданные результаты.
Simon Property Group – один из крупнейших операторов торговых центров в стране, в число ее торговых центров входят, среди прочих, Stanford Shopping Center и Laguna Hills Mall (Калифорния), Houston Galleria и Pentagon City (Вашингтон), а также The Westchester (Нью-Йорк). С 2003 по 2009 г. Simon сократила потребление энергии на 25 %. «Примерно на 60 % это было достигнуто благодаря использованию передовой практики, а также здравому смыслу и должному вниманию, – сказал Джордж Карагиаур, топ-менеджер Simon, ведающий вопросами энергоэффективности. – Нужно выключать свет, закрывать за собой двери и кондиционировать не все помещения. По сути, мы говорим нашим менеджерам о том, о чем говорили нам наши родители»13.
Передовая практика также включает в себя вещи, «которые на первый взгляд не видны», например надлежащее техническое обслуживание систем отопления и кондиционирования воздуха. На 40 % сокращение потребления энергии было достигнуто благодаря инвестициям в освещение, более эффективные системы охлаждения и системы контроля управления. Средства можно вкладывать в очень крупные новые системы, а можно и в перенастройку автоматов для продажи безалкогольных напитков, чтобы они отключались ночью, когда торговый центр закрыт.
Конструкционная эффективность
Конструкционная эффективность становится частью подхода к строительству. «Зеленое здание» – это инициатива, которая зарождалась как нечто побочное, а сегодня стала одним из приоритетных направлений. Она изменила подход к строительству и стимулирует исследования и разработки в индустрии, где этот вид деятельности до недавнего времени не был приоритетным.
Наибольшую известность получили методологии оценки экологических аспектов строительства, эксплуатации и обслуживания зданий организации U. S. Green Building Council, разработанные в рамках программы Leadership in Energy and Environmental Design (LEED). В рамках LEED разрабатываются руководства и выдаются сертификаты на новые здания и модернизацию зданий в целях повышения энергоэффективности и в экологических целях. Организация использует систему баллов с категориями «сертифицировано», «серебряное», «золотое» и «платиновое».
Но разработать систему оценки воздействия зданий и всего того, что в них находится, на окружающую среду непросто. На что, например, должна быть нацелена экологическая оценка здания, на потребление энергии и выбросы углекислого газа или же также на неистощительное лесопользование, утилизацию токсичных отходов, перенаселенность городов? Следует принимать во внимание и географию. Так, в штате Аризона воду необходимо очищать совсем не так, как в штате Мэн. Короче говоря, оценить потребление энергии и воздействие на окружающую среду не так легко, и методологические подходы здесь неясны.
Сегодня ключевым аспектом, позволяющим добиться высокого уровня энергоэффективности во фрагментированной строительной индустрии, является комплексное проектирование. Архитекторы, застройщики, инженеры и консультанты должны работать в тесном контакте на всех этапах – от разработки проекта до строительства. Целью такого сотрудничества является обеспечение совместимости стен здания, системы отопления и охлаждения, вентиляции и освещения, что дает существенную экономию. Например, высокоэффективная оболочка, т. е. наружные стены, устраняет потребность в дополнительных системах отопления у окон и позволяет установить менее мощное оборудование для отопления и охлаждения.
Некоторые из сегодняшних новшеств в зданиях перекликаются с принципами, которые стали частью подхода к строительству еще до XX в., до того, как люди обрели контроль над своей средой и начали «искусственно создавать погоду». Конечно, сегодня все это реализуется на гораздо более высоком уровне с использованием современных технологий и инструментов, а также научных и технических представлений, которых не было еще в недавнем прошлом. Так, теплоемкость здания, как и каменных стен когда-то, используется в дневное время в качестве аккумулятора энергии, которая ночью идет на обогрев.
«В какой-то мере, – заметил Леон Гликсман, – все это восходит к решениям, которые появились много лет назад, только сегодня мы имеем высокотехнологичные версии». Тем не менее он высказал предостережение: «Срок службы здания составляет 50–100 лет. Что если система отработает год, а потом перестанет функционировать? Внедрение новшеств – это всегда большой риск»14.
Mottainai: слишком ценно, чтобы выбрасывать
Фактор, который может оказать решающее влияние на использование энергии в зданиях, – это образ мышления, отношение живущих и работающих в них людей. Представление о воздействии образа мышления дает Япония.
Япония является законодателем мод в сфере оптимизации использования энергии с 1970-х гг. Кризисы тех лет стали для нее серьезным потрясением – она внезапно обнаружила, что ее путь быстрого роста разрушен. Эти удары также напомнили японцам об энергетической уязвимости страны. Вместе с тем кризисы сплотили нацию. «Все работали сообща, – вспоминал Наохиро Амая, вице-министр международной торговли и промышленности, несколько лет спустя. – Но ресурсы, к которым мы обратились, находились не в земле, а в наших головах»15.
Так началась общенациональная кампания за энергоэффективность. Японцы нацелили значительную часть своих технических талантов на энергоизобретательность – на более полное использование каждой единицы энергии. Конечно, не все идеи давали желаемый эффект. Так, в середине 1970-х гг. в целях снижения потребности в кондиционировании воздуха в летнее время для офисных работников предложили новое направление мужской моды – деловой костюм с пиджаком с короткими рукавами. Несмотря на то, что в число его сторонников входил премьер-министр страны, shoene rukku, или «энергосберегающий стиль», не прижился.
А вот вложение ресурсов в повышение эффективности энергетических операций и процессов, являющихся частью повседневной жизни, оказалось плодотворным. Добиться этого было относительно несложно, учитывая многовековую традицию бережливости, связанную с ограниченностью земельных и природных ресурсов. Стоит отметить, что американцы, в отличие от японцев, недостатка в земле и природных ресурсах никогда не испытывали.
Ёрико Кавагути в свое время была министром окружающей среды Японии, а затем министром иностранных дел. Сегодня Кавагути является членом верхней палаты парламента Японии, но она все еще помнит эпизод, произошедший во время ее первой поездки в США по программе школьного обмена. «В Рождество члены моей американской семьи, получив подарки, раскрыли их, а оберточную бумагу выбросили. Это меня удивило, поскольку японцы аккуратно складывали оберточную бумагу, чтобы потом воспользоваться ею снова. Мы называли это mottainai».
Слово mottainai, как она пояснила, непросто перевести на другой язык. Настолько непросто, что как-то в министерстве иностранных дел этому вопросу посвятили совещание. Его участники пришли к выводу, что лучший вариант перевода – «слишком ценно, чтобы выбрасывать».
«Mottainai – это наш подход к вещам, который мы практикуем в течение более чем тысячелетие, поскольку все, чем мы располагаем, имеется в ограниченном количестве, – сказала Кавагути. – Поэтому нам приходится бережливо использовать ресурсы. Меня и каждого ребенка дома учили не оставлять на тарелке ни зернышка риса. Это – mottainai. Слишком ценно, чтобы выбрасывать»16.
Концепция mottainai легла в основу подхода Японии к энергоэффективности, который нашел свое отображение в Законе об энергосбережении 1979 г. В 1998 г. в закон были внесены дополнения в связи с запуском программы Top Runner. Ее идея заключалась в том, что в каждой категории электроприборов или автомобилей определялась самая энергоэффективная модель – «лидер», а остальные модели за определенное количество лет должны выйти на энергоэффективность, превышающую энергоэффективность лидера. Таким образом, программа порождала непрерывную гонку в сфере энергоэффективности. Результаты поразительны: средняя энергоэффективность видеомагнитофонов с 1997 по 2003 г. выросла на 74 %, телевизоров – на 26 %. Более поздние поправки к закону 1979 г. затрагивали здания и заводы – для них стали требовать разработки плана повышения энергоэффективности17.
Правительство поощряет инвестиции при помощи широкого спектра налоговых льгот. Также оно штрафует предприятия за недостижение целей по энергоэффективности. Приверженность Японии энергоэффективности прошла серьезную проверку во время энергетического кризиса летом 2011 г. Из-за аварии на атомной электростанции «Фукусима-Дайити» в ряде районов страны возник дефицит электроэнергии. При таких обстоятельствах mottainai была уже не альтернативой, а необходимостью.
Интеллектуальная энергосистема
Разрыв в энергосбережении можно устранить при помощи технологий или, скорее, при помощи сочетания технологий, ноу-хау и поведения. Кейтерай Каллахан, глава организации Alliance to Save Energy, отметил, что «если для других видов топлива необходима физическая инфраструктура, как то трубопроводы и линии электропередач, то для энергоэффективности нужна инфраструктура нематериальная – соответствующая государственная политика, разъяснение основных принципов, а также инновационные финансовые инструменты». В эту инфраструктуру нужно интегрировать и технологии.
Все это обуславливает потребность в изменении подхода к регулированию энергокомпаний, чтобы стимул инвестировать в энергосбережение был таким же весомым, как и стимул инвестировать в строительство новых электростанций. Как сказал Джеймс Роджерс, генеральный директор Duke Energy, «нам необходимо создать такую бизнес-модель, где сокращение мегаватт с точки зрения инвестиций не отличалось бы от производства мегаватт»18.
Но это обуславливает и потребность в технологиях, которые десятилетие или два назад были гораздо менее развиты или даже не существовали. Имеется в виду модернизация всей системы передачи электроэнергии: от генерирующих мощностей до конечного потребителя – дома, офиса или завода, иными словами, создание «интеллектуальной энергосистемы». Этот термин обрел огромную популярность – кто же будет против «интеллектуальной энергосистемы» или за «неинтеллектуальную энергосистему»? Но данная концепция имеет несколько определений. Как сказал глава одной из крупнейших энергокомпаний в мире, «концепция интеллектуальной энергосистемы богата, многогранна и непроста для понимания». В конце концов, это не одна технология, а набор технологий. Суть ее сводится к применению цифровых технологий, двусторонней связи, мониторинга, датчиков, информационных технологий и Интернета.
Основные усилия сейчас сосредоточены на разработке продвинутой измерительной инфраструктуры, которая получила название «интеллектуальный счетчик». Показания обычных счетчиков, которые существуют со времен Самюэля Инсулла, можно считывать. Интеллектуальный же счетчик – это прибор с гораздо более широкими функциональными возможностями. Он избавляет от необходимости считывать показания, поскольку направляет информацию непосредственно энергокомпании, которая получает четкое представление о том, как изменяется нагрузка в режиме реального времени. Помимо этого, он предоставляет домовладельцу информацию о том, сколько электроэнергии он потребляет в любой момент времени. При наличии внутридомовой сети эту информацию можно разбить по отдельным электроприборам, чтобы интеллектуальный холодильник или интеллектуальный телевизор взаимодействовал с интеллектуальным счетчиком. Располагая такой информацией, которая может поступать на блок управления, на веб-страницу потребителя или на его мобильный телефон, домовладелец может снижать потребление энергии электроприборами или даже отключать их в целях экономии.
Когда общее потребление электроэнергии достигает максимума, при помощи интеллектуального счетчика энергокомпания может снизить потребление электроэнергии конкретным домом. Например, в жаркую погоду, когда система электроснабжения работает на пределе, энергокомпания самостоятельно может повысить установку терморегулятора в доме (с согласия домовладельца) с 20 до 22 °С. Если электромобиль получит широкое распространение, интеллектуальный счетчик также будет играть важную роль в управлении подзарядкой, чтобы она осуществлялась поздно вечером, когда потребление электроэнергии на минимальном уровне. Интеллектуальный счетчик способен делать и еще одно – подтверждать экономию энергии. Это может иметь важное значение, если энергокомпания «платит» людям за более высокую энергоэффективность.
Все это направлено на достижение двух целей. Первая – снижение пиковой нагрузки, что уменьшает потребность в дорогостоящих генерирующих мощностях и позволяет экономить средства. Вторая цель – общее повышение энергоэффективности, т. е. экономия энергии и сокращение выбросов углекислого газа.
Все это звучит убедительно. Однако внедрение такой системы связано с определенными трудностями. Также важное значение имеет тарифная политика. Чтобы получить максимум от системы с интеллектуальным счетчиком, потребителям нужно экономить средства, для чего в периоды пиковой нагрузки им следует снижать потребление электроэнергии. Но это требует «динамических тарифов» – иными словами, разных тарифов в разное время суток. При динамических тарифах электроэнергия обходится дешевле, если вы запускаете посудомоечную машину в 23.00, а не в 19.00, в период пиковой нагрузки. Однако пока неясно, что предпочитает большинство потребителей – дифференцированные тарифы или стабильные, прогнозируемые цены. Это станет серьезным тестом для интеллектуального счетчика19.
Помимо этого, существует и проблема конфиденциальности. Готовы ли потребители делиться информацией о потреблении электроэнергии с энергокомпанией и кто будет ведать сбором данных? Готовы ли потребители предоставить энергокомпании и третьей стороне возможность участвовать в управлении работой электроприборов в их доме? Возможно, они станут более сговорчивыми, если энергокомпания предоставит какие-то льготы в обмен на это право. Ответы на подобные вопросы в значительной мере предопределят эффект от интеллектуального счетчика.
Систему передачи электроэнергии просто необходимо сделать более интеллектуальной, а также расширить и реструктурировать, чтобы она и впредь справлялась с возрастающей нагрузкой в виде энергии возобновляемых источников. Электроэнергия, производимая угольной, атомной или газовой электростанцией, прогнозируема и передаваема. Электроэнергия, вырабатываемая ветровой или солнечной установкой, малопрогнозируема, выработка зависит от силы ветра и от того, светит ли солнце. Таким образом, энергосистема должна стать более гибкой и совершенной, чтобы принимать все более внушительную долю непостоянной энергии возобновляемых источников. Это требует инвестиций в линии электропередачи и в цифровое оборудование, необходимые для интеграции большего количества возобновляемых источников энергии в энергосистему, а также для поддержания баланса в энергосистеме, управления напряжением и избежания сбоев в функционировании. Это является основной задачей для Германии, которая планирует удвоить долю возобновляемых источников энергии в выработке электроэнергии к 2020 г.
Движение «интеллектуальная энергосистема» имеет еще одну очень важную цель – повышение надежности и обеспечение способности «самовосстанавливаться». Сделать так, чтобы такие погодные явления, как ледяной дождь или ураган, не приводили к отключению электроснабжения в некоторых районах, невозможно. Однако эта не такая уж серьезная рабочая проблема может вызывать эффект домино – приводить к отключению электроснабжения на большой территории.
Интеллектуальная энергосистема меняет ситуацию. Самовосстанавливающаяся энергосистема имеет датчики, обеспечивающие мониторинг в режиме реального времени, и компьютеры, которые оценивают серьезность проблемы и предлагают операторам варианты ее устранения. Также она обеспечивает двустороннюю связь между контрольными точками энергосистемы и техниками, находящимися в диспетчерских пунктах. Наличие более полной информации о проблеме позволяет энергокомпании значительно сократить время отсутствия электроснабжения и свести к минимуму последствия. Также оно позволяет минимизировать последствия внешнего воздействия – террористической атаки на объекты электроэнергетической инфраструктуры. В целом интеллектуальная энергосистема может ускорить реагирование на возникшую проблему и сократить время работы аварийной бригады20.
Интеллектуальная энергосистема также может стать большим шагом вперед в применении технологий для повышения энергоэффективности зданий. Вместе с тем внедрение новых технологий, которые необходимо интегрировать в существующую систему, не только сложно само по себе, но и связано с рядом рисков, проблем и перерасходом средств. Структура должна гарантировать, что более сложная, более интерактивная система, которая в большей степени опирается на информационные технологии и Интернет, не станет более уязвимой к действиям хакеров и кибератакам21.
В целом новые технологии и подходы могут улучшить работу системы электроснабжения и повысить эффективность использования энергии в зданиях. Полное представление об их воздействии можно будет получить только через какое-то время. В непростом сплетении технологий, политики, экономики и повседневной жизни вполне могут возникнуть неожиданные ответы, как озарение Уиллиса Кэрриера на окутанной туманом платформе станции в Питтсбурге в 1902 г.