Книга: Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей
Назад: Глава 5 Космические хамелеоны
Дальше: Глава 7 Акты исчезновения

Глава 6
Взрывающиеся звезды

Ла-Серена – тихий приморский городок, расположенный примерно в 500 км от чилийской столицы Сантьяго. Лишь на пару месяцев в году, во время курортного сезона, Ла-Серена оживает, принимая множество отпускников. Большинство гостей приезжают сюда позагорать на золотых пляжах, некоторых привлекает неоколониальная архитектура города, а также его окрестности; этот район славится своими винодельнями, где варят писко – крепкий алкогольный виноградный напиток. До сих пор между чилийцами и перуанцами не утихают споры о том, в какой из двух стран был впервые приготовлен этот напиток. Севернее Ла-Серены пролегает легендарная трасса – Панамериканское шоссе. Именно здесь дорога постепенно идет вверх, извиваясь вдоль склонов Андского хребта, пересекая сухие речные долины, усыпанные валунами. Кроме колючего кустарника и кактусов здесь почти нет зелени. Между камней у дороги иногда проскочит вискача – грызун, похожий на кролика, над головой время от времени можно заметить парящего ястреба. Примерно через 130 км после выезда из города дорога сворачивает вправо к горам. Уже с развилки можно заметить группу белых куполов, как будто из сказки, – они вырисовываются на фоне неба и видны издалека. Последний рывок на вершину Лас-Кампанас пролегает по крутой узкой дороге, высеченной в горном склоне, – и вот астрономы наконец оказываются на горном пике высотой 2282 м. Днем с вершины открывается живописный вид, но он не выдерживает никакого сравнения с завораживающим ночным зрелищем, когда через все небо перекидывается искрящаяся звездами дуга Млечного Пути, а сбоку от него просматриваются два размытых ярких пятна – Магеллановы облака, Малое и Большое.
В ночь с 23 на 24 февраля 1987 г. здесь в Лас-Кампанасе находился Иэн Шелтон – 30-летний канадец родом из города Виннипег. В этой обсерватории он работал в качестве постоянного наблюдателя на небольшом 600-мм телескопе, принадлежащем Университету Торонто. Шелтон не только успевал регистрировать данные, которые требовались торонтским астрономам, но и находил время повозиться с еще одним телескопом поменьше – 250 мм, также установленным на этой горе. Возраст телескопа был уже значительным – более полувека. Он был установлен в небольшом сарае, причем даже не имел автогида для отслеживания звезд, поэтому Шелтону приходилось следить за небом вручную. В ту ночь Шелтон в очередной раз направил маленький телескоп на Большое Магелланово Облако – одну из галактик-спутников Млечного Пути. Длительные экспозиции этой карликовой галактики Шелтон запечатлевал на старомодных фотопластинках; затем он собирался изучить полученные снимки и поискать в глубинах Облака переменные звезды.
В предрассветный час 24 февраля, уже собираясь идти спать, Шелтон решил проявить последнюю фотопластинку, отснятую этой ночью. Он извлек пластинку из проявочного бачка и присмотрелся к ней – хотел проверить, насколько правильная была экспозиция. Тут он обратил внимание на странную деталь – необычное яркое пятно рядом с хорошо известной туманностью Тарантул (по форме она действительно напоминает паука). Ученый задумался, что бы это могло быть, и решил, что ему просто попалась дефектная пластинка. Просто чтобы лишний раз в этом удостовериться, он вышел на чистый сухой горный воздух и взглянул на небо невооруженным глазом. В Большом Магеллановом Облаке он сразу заметил яркую звезду, которой там не было еще прошлой ночью. Шелтон поспешил к еще одному телескопу, расположенному рядом на горном кряже, чтобы поделиться этой новостью. Шелтон рассказал о своей загадочной находке двум другим астрономам, дежурившим на контрольном пункте, – Барри Мадоре и Уильяму Кункелю. Пока они об этом беседовали, чилиец Оскар Духальде – оператор телескопа – добавил, что и он несколько часов назад заметил эту звезду, когда выходил на улицу подышать воздухом. Все четверо пришли к выводу, что перед ними – сверхновая. Так называется взорвавшаяся звезда, которая в течение короткого времени может сиять ярче, чем миллиарды солнц. Астрономия не знает каких-либо иных небесных тел, чья яркость может меняться так плавно и при этом быстро. Еще вчера ночью будущую сверхновую не мог зарегистрировать телескоп, а уже сегодня она легко видна невооруженным глазом. Оставалось признать, что Шелтон и Духальде действительно открыли сверхновую, взорвавшуюся в галактике-спутнике Млечного Пути.
На противоположном берегу Тихого океана, в приморском новозеландском городке Нельсон той ночью не спал еще один человек – бывший лавочник и страстный астроном-любитель Альберт Джонс. Джонс тоже высматривал переменные звезды в Большом Магеллановом Облаке. Будучи настоящим энтузиастом, он то и дело засиживался за телескопом, который установил у себя на заднем дворе, и глядел в небеса. В ночь на 24 февраля Джонс заметил яркую голубую звезду, явно не относившуюся к Большому Магеллановому Облаку. Он был уверен, что ранее точно не видел этой звезды, поэтому отметил, какое положение она занимает относительно других звезд, расположенных в поле зрения. Прежде чем Альберт смог с уверенностью оценить яркость этой звезды, набежали облака, и звезда исчезла из вида. Джонс предположил, что это, вероятно, сверхновая, поэтому сообщил о ней другим астрономам, посоветовав им также отыскать эту звезду и следить за тем, как она будет меняться. Оказалось, что Джонс действительно открыл ту же самую сверхновую, которую заметили Шелтон и Духальде, – но совершенно независимо от них и на несколько часов раньше.
Сверхновая была замечена и в Австралии – новую звезду обнаружил Роберт Макнот, работавший в обсерватории Сайдинг-Спринг, расположенной примерно в 400 км от Сиднея. Макноту посчастливилось сфотографировать Большое Магелланово Облако в ту же ночь, что и Шелтону в Чили. Макнот сразу проявил фотопластинки с изображениями Облака, но был слишком занят другими делами, поэтому не успел их сразу как следует рассмотреть. Когда ему сообщили о сверхновой по телефону, Макнот помчался к своим пластинкам. На его фотографиях (некоторые из них были отсняты на 15 часов раньше шелтоновских) также просматривался небесный маяк, который было невозможно с чем-либо спутать. Макнот сравнил его положение с более ранними снимками этой области неба и заключил, что звезда расположена ровно на том же месте, где ранее находился голубой сверхгигант Sanduleak –69° 202; эта звезда давно фигурировала в каталогах, и астрономы ее изучали. Таким образом, впервые в истории удалось точно определить, какая именно звезда взорвалась; иными словами, в распоряжении ученых оказались фотографии звезды «до» и «после» взрыва. Астрономы смогли проследить последние стадии эволюции огромной звезды так точно, как никогда ранее.
К 10.00 24 февраля об этом открытии уже знали исследователи со всего мира – кому-то успели позвонить воодушевленные коллеги, другие получили телеграмму из Международного астрономического союза. Всеобщее ликование было связано и с тем, что сверхновая 1987А (именно под таким названием стала известна новая звезда) оказалась первой сверхновой, взорвавшейся в непосредственной близости от нашей Галактики со времен изобретения телескопа – то есть примерно за последние 400 лет. Это была самая яркая и близкая к нам сверхновая, которую удалось увидеть за последние 383 года – с тех пор как в 1604 г. Иоганн Кеплер невооруженным глазом наблюдал в нашей Галактике взрыв другой сверхновой. У астрономов появилась беспрецедентная возможность лицезреть агонию умирающей звезды. В течение следующих часов и дней остатки звезды постепенно растекались с места взрыва, смешиваясь с газом и пылью окружающего межзвездного пространства. Сама сверхновая становилась в нашем небе все менее и менее яркой.
Астрономы спешно задействовали в Южном полушарии целый арсенал мощных оптических, инфракрасных и радиотелескопов. К работе подключилось множество специалистов, особенно из Чили, Австралии и Южной Африки, где располагаются многочисленные современные наземные обсерватории. Исследования велись и при помощи специальной аппаратуры, установленной на борту космических кораблей, – речь идет о телескопах ультрафиолетового и рентгеновского диапазонов. Объективы всех этих аппаратов были устремлены на Большое Магелланово Облако, где разворачивались беспрецедентные события. В этот период ученые работали не покладая рук, лишь немногие из них могли припомнить подобный аврал. Как восторженно выразился один астрофизик, работа кипела «словно под Рождество».
Джон Бакал, признанный эксперт по моделированию процессов, протекающих в глубине звезд, в тот период работал в Институте перспективных исследований в Принстоне, штат Нью-Джерси. Открытие сверхновой произвело на Бакала такое глубокое впечатление, что он даже потерял сон. Причем неслучайно: ведь Бакал знал, что самые первые и, пожалуй, наиболее важные предвестники этого космического катаклизма должны были появиться за несколько часов до того, как астрономы заметили в свои телескопы взрыв сверхновой. Бакал отлично понимал, что, согласно теоретическим моделям звездной эволюции, коллапс звездного ядра (финал существования массивной звезды) должен сопровождаться обильным выбросом нейтрино, которые мчатся из эпицентра взрыва, не встречая на пути практически никаких преград. Последний салют озарит небо позже, когда разлетится внешняя оболочка звезды. Спустя всего несколько минут после известия о сверхновой 1987А Бакал и двое его коллег взялись за расчеты: они собирались вычислить, сколько нейтрино должны были зафиксировать различные детекторы, расположенные по всей Земле. Изначально предполагалось, что эта сверхновая могла быть «ненастоящей»: то есть мы могли наблюдать не окончательную гибель огромной звезды, а так называемую «сверхновую типа 1а». В этом случае взрывается звездный огарок, так называемый белый карлик; это происходит, если он сможет перетянуть на себя достаточно много вещества от крупной звезды-соседки и в результате достигнет критической массы. Но астрономические наблюдения свидетельствовали об обратном, поэтому трое теоретиков взялись за дело. Они определили, что классический взрыв сверхновой должен дать небывалый улов нейтрино – как минимум несколько десятков зарегистрированных частиц. Не прошло и недели, как физики отправили статью с такими выводами в журнал Nature – поэтому их прогноз оказался опубликован раньше, чем были получены результаты из нейтринных обсерваторий.
Тем временем физики-экспериментаторы приступили к анализу данных, записанных на нескольких подземных детекторах по всему миру. Самые благоприятные условия для регистрации нейтрино от этой сверхновой сложились на детекторе Kamiokande; он представлял собой огромный резервуар чистой воды, в стенах которого находились тысячи ФЭУ, которые регистрировали вспышки света, возникающие при столкновении нейтрино с атомами в молекулах воды.
К счастью, этот детектор уже эксплуатировался на полную мощность после коренной доработки, законченной всего двумя месяцами ранее. Многие астрофизики не скрывали волнения, дожидаясь, пока члены коллаборации Kamiokande просканируют в Токио свои магнитные ленты с данными. Поскольку расчеты Бакала и других ученых позволяли предположить, что аппаратура действительно обладает достаточной чувствительностью, чтобы зарегистрировать нейтрино от сверхновой 1987А, отсутствие признаков нейтрино означало бы, что мы в корне неправильно представляем себе механизмы возникновения сверхновых.

 

Внутри нейтринного детектора Kamiokande
(Institute for Cosmic Ray Research, University of Tokyo)

 

Пришли результаты. К огромному облегчению ученых во всем мире, в данных четко прослеживались нейтринные сигналы, в происхождении которых не приходилось сомневаться. Таким образом, Джон Бакал и его коллеги-астрофизики совершенно верно описывали, какие именно процессы протекают при взрыве сверхновой. ФЭУ в детекторе Kamiokande зафиксировали 11 вспышек за время всплеска, продолжавшегося несколько секунд. Это произошло примерно на три часа раньше, чем сверхновую наблюдали в оптические телескопы астрономы в Чили и Новой Зеландии. На другом краю света, близ Кливленда, аналогичный детектор нейтрино, расположенный в неглубоком соляном руднике под озером Эри, зафиксировал восемь вспышек – одновременно с Kamiokande. Позже стало известно, что еще один детектор (с керосином в качестве сцинтиллятора), расположенный в Баксанской нейтринной обсерватории на Кавказе, в России, зарегистрировал пять вспышек. Две дюжины вспышек, зафиксированных в ходе этих трех экспериментов, – следы лишь некоторых нейтрино, миллиарды и миллиарды которых пронеслись через недра нашей планеты, а возникли в самом сердце звездного взрыва, произошедшего в Большом Магеллановом Облаке. Все три упомянутые обсерватории расположены в Северном полушарии, а Магеллановы облака видны в Южном. Это означает, что нейтрино прошли нашу планету насквозь, прежде чем попали в детекторы. Бакал, воодушевленный экспериментальным подтверждением своих теоретических прогнозов, признался журналу Time, что участие в бурных научных событиях, связанных со сверхновой 1987А, казалось ему сказкой.
Может показаться, что общий улов в 24 частицы – не повод для гордости. Но важность этих нейтринных событий подчеркивается хотя бы тем, что впоследствии о них были написаны сотни научных статей. При взрыве сверхновой 1987А мы впервые наблюдали нейтрино, пришедшие к нам не с Солнца, а из другого звездного источника. Поэтому стоит ли удивляться, что японский физик Масатоси Косиба, лидер коллаборации Kamiokande, в 2002 г. получил четверть Нобелевской премии по физике – во многом за измерения этих нейтрино. Призрачные частицы, которые несколькими десятилетиями ранее на кончике пера открыл Вольфганг Паули, пытавшийся объяснить бета-распад, к концу XX в. стали для астрономов важными космическими посланцами, которые помогли понять жизненный цикл Солнца и других, более массивных звезд.
Адам Барроуз, физик из Принстонского университета, писал, что после обнаружения этих нейтрино «мы впервые смогли осознать, какие дикие спазмы сопровождают гибель звезды, тогда как ранее это было просто невозможно». Полученные результаты подтвердили общую картину гибели массивной звезды, израсходовавшей запасы ядерного топлива; физики-теоретики обрисовали этот процесс за десятилетия работы. Вот что сказал об этом Джон Биком, физик-теоретик из государственного Университета Огайо, изучающий связи между физикой частиц, астрофизикой и космологией: «Нейтрино позволяют нам заглянуть в недра огромных звезд, находящихся на пороге гибели. В подобных ситуациях астрофизики могут наблюдать явления, принципиально недоступные для обычной астрономии».
Алекс Фридленд из Национальной лаборатории Лос-Аламоса объясняет, что сверхновая – это, в сущности, «нейтринная бомба». Ведь при ее взрыве выделяется умопомрачительное количество этих частиц – 1058, то есть десять миллиардов триллионов триллионов триллионов триллионов нейтрино. Даже по астрономическим меркам это невероятно много. Фактически энергия, излучаемая несколько секунд в виде нейтрино, в несколько сотен раз превышает суммарную энергию Солнца, которую наша звезда успеет испустить в виде фотонов за всю свою жизнь (около 10 млрд лет). Более того, при взрыве сверхновой 99 % ее гравитационной энергии уходит на образование нейтрино разных ароматов, и лишь 0,5 % излучается в качестве видимого света.
Галактика Большое Магелланово Облако находится на расстоянии около 160 000 световых лет от нас. Это означает, что нейтрино, родившиеся при взрыве сверхновой и достигшие Земли в 1987 г., начали свой путь 160 000 лет назад. В те времена древние люди еще кочевали по Восточной Африке, а мохнатые мамонты топтали сибирскую тундру. Сама звезда Sanduleak –69° 202 запылала примерно на 11 млн лет ранее, примерно в те времена, когда по Земле начали расселяться стада степных млекопитающих, но еще до того, как поднялись Гималаи. В течение первых 10 млн лет своей жизни эта звезда подпитывалась энергией ядерных реакций, в ходе которых водород превращается в гелий – точно как на нашем Солнце. Эта энергия не позволяла звезде схлопнуться под действием собственного веса. Когда ядро звезды практически полностью состояло из гелия, выделение энергии приостановилось. Ядро больше не могло выдерживать гравитационное давление, поэтому сжалось и разогрелось. При этом внешние области звезды расширились, так как водород продолжал гореть в этих слоях, окружавших ядро, словно оболочка. Когда давление и температура в ядре звезды выросли еще сильнее, реакции ядерного синтеза начались в гелии – он стал превращаться в углерод и кислород. К тому времени звезда Sanduleak –69° 202, которая изначально была примерно в 20 раз массивнее Солнца, превратилась в красный сверхгигант – теперь она была примерно в 500 раз объемнее нашей звезды.
Выгорание гелия в ядре звезды продолжалось еще около миллиона лет, пока и это топливо не закончилось – гравитация вновь начала брать верх. Далее, насколько мы представляем себе звездную эволюцию, произошло следующее: ядро продолжало сжиматься до тех пор, пока не стало достаточно плотным и горячим для превращения углерода в неон, натрий и магний. К этому времени звезда, вероятно, уже потеряла часть своих раздутых внешних оболочек, а оставшееся небесное тело еще немного сжалось, и цвет его изменился с красного на голубой. Ход дальнейшей эволюции еще более ускорился. Углеродный синтез протекал около 12 000 лет. Затем звезда сожгла весь свой неон и кислород, оба этих этапа длились по несколько лет. Наконец в ядре остались в основном сера и кремний, примерно за неделю они превратились в железо. Предполагается, что на данном этапе звезда напоминает гигантскую луковицу – различные элементы послойно расположены вокруг ее железного ядра. Вот и все – дело в том, что железо не может превращаться в более тяжелые элементы, не потребляя энергию извне. Звезда более не могла сопротивляться гравитации. Конец был быстрым и ярким – в небе запылал факел, который удалось увидеть невооруженным глазом даже из соседней галактики – нашего Млечного Пути, правда, через 160 000 лет после описанных событий.
Ученые полагают, что нейтрино значительно приблизили гибель Sanduleak –69° 202. На углеродном этапе звездной эволюции, когда температура в ядре достигла 500 млн градусов, звезда испускала настолько высокоэнергетическое излучение, что оно привело к образованию электронно-позитронных пар (ведь, согласно эйнштейновскому уравнению E = mc2, энергия может превращаться в материю, и наоборот). Как правило, такие пары частица – античастица при столкновении аннигилируют, испуская гамма-лучи, но иногда в результате такого взаимодействия могут возникать пары нейтрино и антинейтрино. Поскольку нейтрино и антинейтрино редко взаимодействуют с окружающей материей, они должны ускользать из звезды, унося с собой часть энергии, которую звезда могла бы бросить на борьбу с гравитацией.
Более того, нейтрино могут играть важнейшую роль и при самом взрыве сверхновой. Когда железное ядро выгоревшей звезды достигает критической массы, примерно в 1,4 раза превышающей массу Солнца (это пороговое значение известно под названием «предел Чандрасекара», в честь индийского астрофизика, описавшего данный феномен), оно за доли секунды сжимается в миниатюрный шарик, имеющий всего лишь около 50 км в поперечнике. Экстремальные температуры способствуют обильному выделению энергии, в результате возникает еще больше пар нейтрино-антинейтрино. Эти частицы ускользают из ядра (на что у них уходит несколько долгих секунд, ведь плотность окружающего их вещества невероятно высока), унося с собой довольно много энергии. Тем временем свободные нейтроны, изобилующие в этой высокоэнергетической среде, сливаются с железными ядрами, в результате чего образуются еще более тяжелые элементы. Схлопывание прекращается, когда такой шар сравнивается по плотности с атомным ядром. В таком случае ядерные силы не позволяют протонам и нейтронам сколь-нибудь еще уплотниться. Фактически сжимающееся звездное ядро немного разбухает, сталкиваясь с устремляющимися к нему внешними оболочками и порождая мощную ударную волну. Но, согласно самым современным компьютерным моделям, эта взрывная волна быстро ослабевает.
Именно на этом этапе в игру вновь могут вступить нейтрино, которые словно приходят звезде на помощь. «Если даже ничтожная доля нейтрино, струящихся из звездного ядра, будет попадать в вещество непосредственно за гребнем останавливающейся ударной волной, подпитывая этот гребень своей энергией, то этого может быть достаточно, чтобы ударная волна снова пришла в движение», – объясняет Георг Раффельт, ученый из Института физики им. Макса Планка в Мюнхене. «Если бы не нейтрино, – подчеркивает он, – то вся звезда превратилась бы в черную дыру без каких-либо видимых фейерверков». Ожившая взрывная волна разносит во все стороны оставшиеся оболочки звезды. В результате тяжелые элементы до железа включительно и еще более тяжелые элементы, образующиеся при взрыве сверхновой, выбрасываются в космическое пространство. Часть такого обогащенного звездного вещества позже оказывается в составе звезд нового поколения и планет, которые их окружают. Эти атомы есть и в нашем теле. Кальций в наших костях, железо в нашей крови и кислород, которым мы дышим, – все это образовалось когда-то давно при взрывах сверхновых. Это же касается меди, из которой изготавливают проволоку, серебра, золота и платины, идущих на ювелирные украшения, галлия, используемого в электронике. Раффельт указывает: «Поскольку нейтрино играют важнейшую роль при звездных взрывах, мы обязаны этим частицам самим нашим существованием». Если бы не нейтрино, то Вселенная, возможно, была бы абсолютно пустой, неприглядной и совершенно непригодной для развития жизни.
Горстка нейтрино от взрыва сверхновой 1987А, которые нам удалось зафиксировать, вкупе с астрономическими наблюдениями послужила физикам-теоретикам отличным материалом для проведения масштабных и сложных моделирований на суперкомпьютерах. Задача этих моделей – продемонстрировать, как разрушается гигантская стареющая звезда, а ее ядро превращается в сверхплотный шарик из нейтронов (нейтронную звезду) или черную дыру. При этом внешние оболочки отслаиваются, образуя сияющее газопылевое облако. Сегодня, рассматривая один из снимков, полученных космическим телескопом «Хаббл», мы видим яркое кольцо и две словно переплетенные петли. Вероятно, это вещество, выброшенное звездой-прародительницей, а впоследствии подсвеченное ультрафиолетовым сиянием от взрыва сверхновой. Но в этой картинке недостает одной важнейшей детали. Учитывая примерную массу звезды-прародительницы, астрономы полагают, что ее ядро должно было превратиться в нейтронную звезду, но обнаружить эту звезду пока не удается. Возможно, эти звездные останки скрыты в облаке космической пыли.
Конечно, нам удалось зарегистрировать буквально считаные нейтрино, образовавшиеся при взрывах сверхновых. Тем не менее такие нейтрино позволили выяснить некоторые важные аспекты того, как именно взрывается массивная звезда на закате своего существования. Астрофизики, участвовавшие в этих исследованиях, с удовлетворением обнаружили, что количество зарегистрированных ими нейтрино и энергии этих частиц согласуются с прогнозируемыми характеристиками взрыва, полученными в результате теоретических расчетов. Поскольку теория и наблюдения в данном случае превосходно соответствовали друг другу, исследователи заключили, что сверхновая отнюдь не теряет энергию в ходе какого-то таинственного процесса. В частности, удалось исключить спекуляции о том, что нейтрино сами испускают гипотетические экзотические частицы, так называемые «аксионы», либо просачиваются в загадочные иные измерения. Прибытие некоторых нейтрино с запаздыванием в несколько секунд относительно основной массы подтвердило, что им требуется некоторое время, чтобы вырваться из исключительно плотного сжатого ядра – как и предполагалось.
Эти измерения не только поведали ценную информацию, касающуюся динамики сверхновых звезд, но и помогли ученым лучше понять природу самих нейтрино. Поскольку нейтрино попали на Землю более чем за три часа до того, как взрыв сверхновой удалось сфотографировать и наблюдать в оптические телескопы, можно было сделать вывод, что скорость нейтрино очень близка к скорости света. Чем легче частица, тем быстрее она перемещается, поэтому ученые предположили, что масса нейтрино очень мала. Исходя из того, сколько времени нейтрино затратили на путь от сверхновой 1987А до Земли, ученые пришли к выводу, что, несмотря на подлинное изобилие нейтрино, вряд ли именно из них состоит таинственная темная материя, наполняющая всю Вселенную. Более того (как вы уже знаете из главы 1), когда в 2011 г. в СМИ развернулась шумиха о том, что нейтрино якобы летят быстрее скорости света, один из наиболее серьезных контраргументов был связан именно с наблюдениями этой сверхновой. Если бы скорость нейтрино действительно превышала скорость света (о чем изначально сообщили ученые из коллаборации OPERA), то нейтрино со сверхновой 1987А должны были опередить видимый свет на целые годы, а не на три часа.
Сверхновая 1987А подогрела интерес астрофизиков к тому, какие именно процессы протекают в недрах умирающих звезд. «Вообразите, как много нового мы бы узнали, если бы смогли отловить тысячи нейтрино от какой-нибудь сверхновой, которая взорвалась бы поблизости от Земли», – размышляет Алекс Фридленд. Такое экстраординарное явление позволило бы нам не только проследить всю череду событий, разворачивающихся при таком взрыве, но и точно узнать, что же останется после взрыва: черная дыра или нейтронная звезда. Специалисты по физике частиц также интересуются нейтрино, приходящими от сверхновых, поскольку возникает редчайшая возможность наблюдать, как ведут себя эти частицы в экстремальных условиях, которые невозможно смоделировать в лаборатории.
Как астрофизики, так и специалисты по физике частиц смогут достичь многих упомянутых целей, если коллапс звездного ядра, сопровождаемый взрывом сверхновой, произойдет в нашей Галактике. Однако в Млечном Пути таких взрывов не наблюдалось с 1604 г., когда звездочеты (а также немецкий математик Иоганн Кеплер) заметили «новую звезду» в созвездии Змееносец. В апогее взрыва сверхновая сияла настолько ярко, что была видна даже днем. Современные телескопы – оптические, рентгеновские и радиотелескопы – позволяют наблюдать остатки этой сверхновой, которые представляют собой оболочку из раскаленного газа. Всего за три десятилетия до того, как в 1604 г. Кеплер наблюдал сверхновую, европейцы видели еще один такой взрыв. Легендарный датский астроном Тихо Браге наблюдал другую сверхновую в 1572 г. в созвездии Кассиопеи, о чем писал так: «Я заметил, что новая и необычная звезда, превосходящая все остальные звезды по блеску, сияет почти прямо над моей головой. Я был настолько изумлен этим зрелищем, что мне даже не было стыдно усомниться в достоверности моих собственных глаз. Но когда я увидел, что другие, когда им указывалось на место, могли видеть, что там действительно есть звезда, у меня не было больше сомнений». На самом деле наблюдения сверхновой, тщательно выполненные Тихо в 1572 г., впервые позволили понять, что небеса не неизменны – несмотря на то, что Аристотель утверждал обратное, а в XVI в. аристотелевскую точку зрения еще разделяли многие европейские философы.
Исторические документы и петроглифы позволяют заключить, что за последние несколько тысячелетий можно было наблюдать невооруженным глазом еще несколько сверхновых. Пожалуй, древнейшее такое свидетельство найдено в Китае: это запись, вытравленная на кости около 1300 г. до н. э. В ней упоминается «Великая новая звезда», которая была видна в небе рядом с другой яркой звездой – Антаресом. В китайской хронике «История династии Поздняя Хань» говорится о «звезде-гостье», которая появилась в 185 г., а затем медленно угасала в течение нескольких месяцев. В 1006 г. о сияющей сверхновой сообщают европейские монахи и египетский астролог; вероятно, это было самое зрелищное из когда-либо зафиксированных астрономических явлений. Хронист из бенедиктинского монастыря в швейцарском кантоне Санкт-Галлен так описывал это событие: «Явилась новая звезда невиданного размера, которая все время мерцала и слепила глаза, вызывая панику… она была видна около трех месяцев у южного края неба, за пределами всех созвездий, какие есть в небесах». Ученый Али ибн-Ридван, находившийся в Каире, писал: «Это чудо явилось в зодиакальном созвездии Скорпиона, в противостоянии Солнцу… Небо заметно посветлело из-за света звезды. Сила ее света немного превосходила четверть силы лунного». Сверхновая 1054 г., из расплывшихся остатков которой образовалась знаменитая Крабовидная туманность в созвездии Тельца, упоминается в китайских, японских и арабских хрониках. Некоторые ученые полагают, что и индейцы анасази, жившие на юго-западе североамериканского континента также запечатлели ее на своих наскальных рисунках.
В 1930-е гг. астрономы Вальтер Бааде и Фриц Цвикки из Калифорнийского технологического института пришли к выводу, что, поскольку сверхновые отлично видны на межгалактических расстояниях, они должны быть невероятно яркими. Бааде, родившийся в Германии, был щепетильным наблюдателем и вежливым любезным человеком. В Гамбурге он познакомился с Вольфгангом Паули, и они навсегда стали друзьями. Паули и Бааде даже написали в соавторстве научную статью об изогнутых формах хвостов комет. Бааде перебрался в Калифорнию в 1931 г. и стал работать в обсерватории Маунт-Вилсон. В годы Второй мировой войны Бааде сохранил немецкое гражданство, поэтому находился под наблюдением спецслужб как потенциальный лазутчик. Он провел множество ночей за окуляром 2,5-метрового телескопа Хукер (на тот момент – крупнейшего в мире), делая снимки тусклых далеких галактик. Шла война, поэтому в расположенном неподалеку Лос-Анджелесе действовала светомаскировка, и заниматься астрономией было особенно удобно. Опираясь на работы Эдвина Хаббла, Бааде установил, что Вселенная гораздо обширнее, чем предполагалось ранее.
Цвикки, в отличие от своего коллеги, был человеком склочным и самоуверенным, любил называть своих врагов «сферическими ублюдками» («сферическими», объяснял он, так как они кажутся ублюдками, с какой стороны на них ни взгляни). Цвикки родился в Болгарии, но родители его были швейцарцами. Цвикки провел детство в Швейцарии у бабушки и дедушки, в Швейцарии же впоследствии познакомился с Вольфгангом Паули и Альбертом Эйнштейном. Защитив докторскую диссертацию в Цюрихе, он отправился в Калифорнийский технологический институт для повышения квалификации и остался в Калифорнии на должности профессора. Цвикки увлекался горнолыжным спортом и альпинизмом, ценил соревновательный дух как в спорте, так и в науке. Среди многообразных открытий Цвикки следует отметить такое: он установил, что бо́льшая часть массы в скоплениях галактик приходится на так называемую «темную материю». Он также предположил, что галактики, расположенные поблизости от нас, могут действовать как «гравитационные линзы», искривляя и усиливая свет других галактик, расположенных дальше, но находящихся на той же оптической оси. Несмотря на столь разные характеры, Бааде и Цвикки как-то смогли сработаться (хотя позже Бааде опасался, что Цвикки может учинить над ним физическую расправу).
В провидческой статье, опубликованной в 1934 г., Бааде и Цвикки писали: «Со всеми подобающими оговорками мы выдвигаем гипотезу, что сверхновая представляет собой переходную стадию от обычной звезды к нейтронной, состоящей главным образом из нейтронов. Такая звезда может обладать очень малым радиусом и чрезвычайно высокой плотностью». Их озарение кажется тем более примечательным, учитывая, что нейтрон был открыт всего двумя годами ранее. Затем Цвикки решил найти как можно больше сверхновых, вооружившись для этого телескопом с широким полем обзора. За всю жизнь Цвикки открыл более 120 сверхновых.
Современные астрономы, занимающиеся наблюдением других галактик, полагают, что в Млечном Пути каждые 100 лет должны взрываться хотя бы несколько массивных звезд. Но мы вполне можем пропустить сверхновую, если взрыв произойдет слишком далеко от нас, так как межзвездная пыль не позволяет заглянуть в дальние пределы нашей галактики. Действительно, недавние наблюдения, выполненные в рентгеновском и радиодиапазоне, показали, что около 150 лет назад вблизи от центра Галактики произошел сверхновый взрыв, который, однако, на Земле остался незамеченным. Но если межзвездное вещество и заслоняет от нас видимый свет сверхновой, оно не в силах остановить поток нейтрино. Поэтому сильный всплеск нейтрино должен означать, что где-то в Млечном Пути погибла массивная звезда. Мы располагаем высокочувствительными детекторами нейтрино, которые работают уже около четверти века, но пока не зарегистрировали взрыва сверхновой в нашей Галактике. Раффельт отмечает: «Такой шанс бывает раз в жизни, поэтому мы должны быть начеку».
Кейт Скулберг из Университета Дюка придерживается такого же мнения. Она вместе с коллегами участвовала в создании Системы раннего оповещения о взрывах сверхновых (сокращенно SNEWS). Это централизованная сеть, призванная максимально оперативно зарегистрировать коллапс звездного ядра, если такое явление произойдет в Галактике. По всему миру установлены детекторы, которые могут зафиксировать потоки нейтрино от сверхновой; планируется, что такие детекторы (например, «Ледяной куб» в Антарктиде, Large Volume Detector и Борексино в Италии, Super-K в Японии) позволят выделить «потенциальные» сверхновые взрывы и отправят всю эту информацию в Брукхейвенскую национальную лабораторию на острове Лонг-Айленд, штат Нью-Йорк. «Если сразу несколько детекторов нейтрино сработают одновременно, вполне вероятно, что где-то неподалеку произошел взрыв сверхновой», – объясняет Скулберг.
Если компьютер SNEWS обнаружит, что сигналы от двух детекторов поступят с небольшой разбежкой (порядка 10 с), то он разошлет оповещение об этом по всем обсерваториям в мире. Чтобы сигнал распространялся с максимальной скоростью, система должна работать без участия человека. Скулберг и ее коллеги надеются, что наземные и орбитальные телескопы рано или поздно зафиксируют электромагнитное излучение от взрыва сверхновой – в частности, оптическое, рентгеновское или радиоизлучение, – что позволит наблюдать развитие сверхнового взрыва, начиная с самых ранних этапов. Есть только одна загвоздка: большинство детекторов нейтрино не позволяют с уверенностью определить, откуда именно пришли эти частицы, поэтому астрономам будет не так просто найти сверхновую. «Тем не менее оповещение позволит немедленно подключить к поискам телескопы с широким полем обзора. Плюс у нас есть множество астрономов-любителей; многие из них превосходно умеют искать новые объекты в небе, – считает Скулберг, – идея заключается в том, чтобы после сигнала как можно больше людей начали искать эту звезду по всему небу и у нас был шанс заметить вспышку пораньше».
Скулберг подчеркивает, что «изучив нейтрино, возникшие при сверхновом взрыве в Галактике, мы узнаем ответы на множество вопросов. Такое событие можно сравнить с информационным рогом изобилия». Детекторы зафиксируют, как со временем изменяются количество и энергия поступающих нейтрино; эти данные помогут понять, как разворачивается взрыв. В частности, ученые смогут определить, сжимается ли звездное ядро до предела, превращаясь в черную дыру, откуда ничто не может ускользнуть – даже нейтрино, – либо вскоре коллапс приостанавливается, и на месте сверхновой остается нейтронная звезда. Если в итоге образуется черная дыра, то поток нейтрино внезапно прекратится. Если же в итоге мы получим нейтронную звезду, то этот звездный огарок будет продолжать испускать нейтрино еще примерно на протяжении 10 с после того, как полностью остынет, он не сразу иссякнет. Скулберг поясняет, что во втором случае «мы сможем наблюдать изначальное охлаждение нейтронной звезды и исследовать свойства сверхплотной материи».
Кроме того сверхновая должна пролить свет на природу самих нейтрино и подсказать ответы на некоторые нерешенные вопросы, которые мы обсуждали в последней главе. Например, физикам никак не удается определить так называемую «иерархию масс» нейтрино. Фактически известно, что должно существовать два тяжелых сорта нейтрино плюс один легкий либо два легких плюс один тяжелый. Возможно, ответ на этот вопрос будет получен только после изучения нейтрино от взрыва сверхновой в Галактике. Более того, в ядре сверхновой концентрация нейтрино так велика, что нейтрино могут взаимодействовать друг с другом, тогда как в иных условиях просто «не замечают» существования других нейтрино. В ходе таких взаимодействий свойства нейтрино могут изменяться. «Мы можем уловить аномалии в их свойствах, что поможет нам увидеть новую физику, не ограниченную Стандартной моделью». Джон Биком соглашается со Скулберг: «Мы можем узнать о нейтрино такую информацию, которую невозможно выяснить в лаборатории».
К счастью, некоторые из существующих детекторов нейтрино – в том числе Super-K, Борексино и «Ледяной куб» – могут зарегистрировать нейтрино от взрыва сверхновой, в какой бы части Млечного Пути он ни произошел. Например, Super-K поймает несколько тысяч таких нейтрино, если взрыв произойдет около центра Галактики, то есть на расстоянии порядка 25 000 световых лет от нас. Он даже позволяет определить, откуда пришли нейтрино (с точностью до нескольких градусов), что соответствует области неба, в несколько раз шире диска полной Луны. Обсерватория «Ледяной куб» в подобном случае зарегистрирует около миллиона нейтринных событий, и именно она лучше всего позволила бы отслеживать изменения потока нейтрино с течением времени. Дело в том, что «Ледяной куб» может разбивать такой поток событий на кратчайшие временные интервалы, каждый из которых не превышает нескольких тысячных долей секунды. «Мы сможем наблюдать всю десятисекундную историю взрыва сверхновой, разделенную на эпизоды длительностью по несколько миллисекунд, – говорит ведущий исследователь лаборатории «Ледяной куб» Френсис Хальцен из Висконсинского университета в Мэдисоне, – и уловить тот самый момент, в который образуется нейтронная звезда».
При взрыве сверхновой образуются нейтрино всех трех ароматов – электронные, мюонные и тау-нейтрино, а также соответствующие им античастицы, но наши детекторы пока не могут зарегистрировать все разнообразие частиц. Разумеется, ученые хотели бы исследовать все три аромата, а также соответствующие сорта античастиц. «Изучать всего один аромат нейтрино – все равно что фотографировать через монохромный светофильтр», – говорит Скулберг. Она же хотела бы увидеть «всю гамму». Чтобы получить такую «цветную картинку», Скулберг вместе с канадскими коллегами первым делом собирается сконструировать специальный аппарат, который будет называться «Гелиево-свинцовая обсерватория» (HALO). Аппарат HALO будет располагаться в лаборатории SNOLAB на севере канадской провинции Онтарио. В качестве детекторного материала в HALO будут применяться 80 т свинца. В таком случае HALO будет обладать уникальной чувствительностью к электронным нейтрино, поэтому дополнит работу иных имеющихся детекторов, которые регистрируют соответствующие античастицы. По сравнению с остальными детекторами нейтрино аппарат HALO совсем маленький, поэтому он сможет обнаружить лишь такую сверхновую, которая взорвется не слишком далеко от нас в пределах Млечного Пути. Поскольку мы практически не представляем, в какой точке Галактики может произойти следующий взрыв сверхновой, сложно обосновать необходимость постройки крупной нейтринной обсерватории именно для таких исследований. «Пока ваш детектор дожидается взрыва сверхновой, он должен выполнять и какую-либо повседневную работу», – объясняет Скулберг.
Именно с таким расчетом разрабатывается новый проект, называемый LBNE (Нейтринный эксперимент с длинной базой). Предполагается, что этот аппарат будет построен в уже упоминавшемся золотом руднике Хоумстейк на территории штата Южная Дакота. В LBNE будет использоваться гигантский резервуар, заполненный 30 000 т охлажденного жидкого аргона. Он будет принимать поток нейтрино или антинейтрино, идущий сквозь толщу пород из лаборатории Фермилаб, расположенной в 1300 км от Южной Дакоты, и фиксировать, как эти частицы меняют аромат. Но при этом LBNE также сможет улавливать различные типы нейтрино, которые могут прилететь к Земле при взрыве сверхновой в нашей Галактике. «Измеряя ароматы нейтрино и их изменение с течением времени, мы получим массу информации о самых разнообразных феноменах, – считает Скулберг, – мы узнаем не только о том, каковы условия в ядре сверхновой, но и подробнее исследуем природу осцилляций нейтрино».
Например, когда в ядре сверхновой протоны сливаются с электронами и образуют нейтроны, возникает выброс частиц, практически на 100 % состоящий из электронных нейтрино. Но на пути из ядра эти нейтрино могут осциллировать (менять аромат), превращаясь в нейтрино других сортов. «Поэтому если выяснится, что этот первичный всплеск состоит из нейтрино разных сортов, а не только электронных нейтрино, то узнаем об осцилляциях много нового», – полагает Скулберг. К сожалению (об этом пойдет речь в главе 8), Министерство энергетики США одобрило постройку лишь базовой модели LBNE, возможности которой будут серьезно ограничены. Тем временем европейские и японские физики предлагают собственные проекты нейтринных обсерваторий, которые будут улавливать нейтрино всех трех ароматов и будут весьма кстати, если где-то в нашей Галактике произойдет взрыв сверхновой.
Физики-теоретики, в свою очередь, при помощи компьютерных симуляций уточняют все более тонкие детали моделей сверхновых. «Возможно, описание процессов, происходящих в первую секунду после взрыва сверхновой, – это задача для суперкомпьютеров уже следующего поколения», – считает Алекс Фридленд. Но при этом он уточняет: «Думаю, что имеющиеся расчеты довольно точно описывают явления, происходящие в течение первых нескольких секунд». Особенно сложно спрогнозировать, как нейтрино будут взаимодействовать друг с другом в сверхплотном ядре сверхновой и менять при этом ароматы. «Необходимо просчитать квантовую механику для целого ансамбля частиц», – отмечает Фридленд.
Следует рассказать и еще об одной «обсерватории» принципиально иной конструкции, которая потенциально может дать совершенно уникальные сведения, особенно если при этом она также поможет обнаруживать нейтрино; эта обсерватория вскоре будет готова к изучению взрыва сверхновой, если он произойдет. Речь идет об обсерватории LIGO (Лазерно-интерферометрическая гравитационно-волновая обсерватория), два корпуса которой расположены на расстоянии около 3000 км друг от друга – в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана. В обоих комплексах имеется L-образная система туннелей. Туннели в каждой паре расположены перпендикулярно друг к другу, длина каждого из них составляет 4 км. Каждый из туннелей насквозь просвечивается лазерным лучом, пропущенным через длинную вакуумную трубку. На пункте управления установлена точнейшая аппаратура, позволяющая уловить малейшие изменения в расстоянии, преодолеваемом лучом лазера. Если LIGO зарегистрирует подобное изменение пути между двумя туннелями хотя бы в одну тысячную ширины протона, это будет означать, что на пути лазера оказались гравитационные волны. Гравитационные волны – это легкая рябь, разбегающаяся по ткани пространства под действием далекого катаклизма. Эти тончайшие «космические складки» были предсказаны еще в рамках гравитационной теории Альберта Эйнштейна, но до сих пор их не удавалось наблюдать непосредственно. Гравитационные волны настолько незаметны, что даже от проезжающего мимо вас грузовика возникает более сильная вибрация, чем от столкновения двух нейтронных звезд в космосе. Именно поэтому в эксперименте LIGO два комплекта идентичного оборудования установлены в двух удаленных друг от друга лабораториях: необходимо отличать подлинный космический сигнал от многочисленных «локальных» помех.
В 2011 г. мне довелось побывать в комплексе Хэнфорд. Я добирался туда на машине из Сиэтла, перевалив в снежный день через Каскадные горы. Обсерватория как раз была в процессе масштабного усовершенствования. Когда эти работы будут завершены, новая лаборатория под названием «Advanced LIGO» должна обладать достаточной чувствительностью, чтобы уловить гравитационное возмущение от столкновения двух нейтронных звезд, произошедшего даже в миллиарде световых лет от нас. Кроме того, эта обсерватория должна «услышать» последний вздох массивной звезды, если она погибнет где-нибудь поблизости от нас (по космическим меркам) и если взрыв окажется достаточно несбалансированным. Если коллапс звезды будет протекать плавно и симметрично, то мы не услышим практически ничего, так как симметричные гравитационные волны гасят друг друга. Однако при хаотическом коллапсе, который распространяется неравномерно, возникнет отчетливый гравитационный волновой сигнал. Это вполне может произойти в том случае, когда сжимающееся ядро звезды бешено вращается, приобретая форму футбольного мяча.
Действительно, существуют доказательства в пользу того, что взрывы сверхновых бывают асимметричными. Астрономы уже наблюдали ряд нейтронных звезд, предположительно образовавшихся при взрывах сверхновых. Эти нейтронные звезды мчатся по космосу со скоростью несколько сотен километров в секунду. Кроме того, вскоре после рождения нейтронной звезды сверхплотная материя ее ядра начинает плескаться, как будто неистовое вращение взбалтывает это вещество. В результате образуются гравитационные волны. «Было бы особенно интересно зарегистрировать и гравитационные волны, и нейтрино от одной и той же сверхновой», – отмечает Кейт Скулберг. Компьютерные модели позволяют предположить, что если эти данные будут получены вместе, то ученые смогут измерить скорость вращения коллапсирующего ядра, выяснив при этом детали физики взрыва. Результаты наблюдения ознаменуют начало подлинной «всесигнальной» астрономии, которая позволит ученым получать взаимодополняющую информацию одновременно и от электромагнитного излучения, и от нейтрино, и от гравитационных волн.
Как ни головокружительны все эти перспективы, они могут стать реальностью не раньше, чем где-нибудь в ближней части Галактики произойдет взрыв сверхновой. Скулберг и Биком в один голос признаются, что такое долгое ожидание очень томительно. Биком описывает свои ощущения так: «Ты как будто надолго задерживаешь дыхание». Проблема заключается в том, что современные обсерватории недостаточно чувствительны, чтобы зафиксировать большое количество нейтрино от сверхновых, взрывающихся в других галактиках. Например, Super-K сможет зафиксировать в лучшем случае один нейтрино, образовавшийся при взрыве сверхновой в Туманности Андромеды – это ближайшая к Млечному Пути соседняя галактика, расположенная примерно в полумиллионе световых лет от нас. Гораздо более крупные, еще не построенные детекторы, например, вышеупомянутая установка LBNE, позволили бы в таком случае зарегистрировать несколько десятков попаданий нейтрино – но этого также совершенно недостаточно, чтобы удовлетворить аппетиты охотников за нейтрино.
Биком и его коллеги решили пойти другим путем: они надеются взглянуть на море астрофизических нейтрино, накопившихся в космосе после многочисленных взрывов сверхновых с коллапсом ядра, которые произошли с начала времен. В среднем каждую секунду во Вселенной взрывается хотя бы одна звезда, поэтому в пространстве должны постоянно существовать бесчисленные нейтрино, образовавшиеся при взрывах сверхновых. Биком стремится разглядеть все это множество нейтрино, так называемый «диффузный фон астрофизических нейтрино», образовавшихся после взрывов сверхновых. По оценке Бикома, на каждый квадратный сантиметр поверхности Земли ежесекундно выпадает несколько сотен астрофизических нейтрино – подлинное изобилие по сравнению с солнечными нейтрино и теми, которые образуются в земной атмосфере под действием космических лучей. Биком считает, что «это очень слабый сигнал, но у нас есть все основания надеяться, что вскоре мы его зафиксируем». Самое сложное в данном случае – отличить астрофизические нейтрино, образовавшиеся при взрывах сверхновых, от гораздо более многочисленных «местных» частиц. Биком с коллегами предположили, что для решения этой задачи можно было бы растворить в гигантском водном резервуаре Super-K немного серебристо-белого металла гадолиния (такая уловка позволила бы повысить чувствительность этого детектора к астрофизическим нейтрино). Цель исследователей – понять, как выглядит выброс нейтрино от типичного взрыва сверхновой, но при этом не дожидаться, пока произойдут «свежие» взрывы такого рода.
Разумеется, обнаружение едва уловимого смешанного нейтринного сигнала от множества сверхновых не отменяет необходимости изучения всех тонкостей взрыва какой-нибудь ближней сверхновой, если он произойдет. Если внимательно рассмотреть окрестности Солнца, то вероятным кандидатом на скорое превращение в сверхновую представляется Бетельгейзе. Это красный сверхгигант в созвездии Ориона, звезда, расположенная прямо на правом плече охотника. Бетельгейзе расположена всего в 640 световых годах от Земли. Эта звезда настолько раздута, что если бы Бетельгейзе оказалась на месте Солнца, то полностью поглотил бы орбиту Земли, а самые внешние слои этой звезды распространились бы даже дальше орбиты Марса. Если бы Бетельгейзе взорвалась, то возникшая на ее месте сверхновая могла бы на протяжении многих дней и даже недель сиять в нашем небе не менее ярко, чем полная луна. Более того, детектор Kamiokande всего за несколько секунд зарегистрировал бы около 60 млн нейтрино, не на шутку озадачив ученых. Раффельт объясняет: «Как правило, нейтринные детекторы рассчитаны на регистрацию очень редких событий, поэтому при таком количестве попаданий они попросту ослепнут – электроника откажет».
Эта Киля – настоящая звезда-колосс, даже по звездным меркам достигающая невероятных размеров. Она как минимум в 100 раз массивнее нашего Солнца и является еще одним вероятным кандидатом на превращение в сверхновую. Звезда, расположенная примерно в 7000 световых лет от нас, – причудливый и переменчивый объект. За последние несколько веков яркость этой звезды неоднократно и очень резко изменялась. В 1843 г. Эта Киля стала одной из ярчайших звезд ночного неба – ее даже ошибочно приняли за сверхновую – и пылала так на протяжении 20 лет. Этот эпизод сопровождался мощным взрывом, при котором звезда потеряла обширные внешние слои, а вместе с ними – десятую часть своей массы. В настоящее время из извергнутого ею вещества образовались две гигантские газовые туманности, немного напоминающие два воздушных шара, между которыми сияет звезда. Несомненно, Эта Киля стремительно приближается к славной гибели. Вполне вероятно, что следующий взрыв станет последним в ее истории. Учитывая, как тяжела эта звезда, на месте ее останков должна образоваться черная дыра. Если в обозримом будущем Эта Киля взорвется и станет сверхновой, то детекторы на Земле зафиксируют около полумиллиона нейтрино.
Итак, по всей видимости, в ближайшем будущем Бетельгейзе или Эту Киля настигнет феерический конец, но мы не можем рассчитать, когда именно произойдет такое событие. По астрономическим меркам этот момент вполне может наступить и через несколько сотен тысяч лет. При этом довольно велика вероятность, что в ближайшие несколько десятилетий где-то в нашей Галактике взорвется какая-нибудь массивная звезда. Алекс Фридленд признался: «Если бы мне предложили поставить деньги на то, что произойдет раньше – взорвется следующая сверхновая или в США построят новый крупный ускоритель частиц, – то я, пожалуй, выбрал бы сверхновую». Даже если сверхновая окажется настолько далеко от Земли, что мы не сможем разглядеть ее сквозь пыльный шлейф Млечного Пути, этот взрыв оставит ярчайший след в нейтринных детекторах по всему миру. Это будет сенсационное, эпохальное событие в истории охоты на нейтрино – физиков ждет просто невиданный праздник.
Назад: Глава 5 Космические хамелеоны
Дальше: Глава 7 Акты исчезновения