Книга: Мир по Эйнштейну. От теории относительности до теории струн
Назад: 23
Дальше: 25

24

Вот несколько указаний для пытливого читателя, который захочет самостоятельно вывести уравнения, связывающие координаты (x, y, z, t) в «системе покоя» c координатами (x’, y’, z’, t’) в системе, «перемещающейся со скоростью v вдоль оси x». Ниже буква c обозначает скорость света. Из соображений единообразия и симметрии можно понять, что искомые уравнения имеют вид: t’ = at − bx, x’ = A (x − vt), y’ = By, z’ = Bz, где коэффициенты a, b, A, B есть функции v и c, которые необходимо определить. Заметим, что луч света, распространяющийся со скоростью c в системе покоя, т. е. такой, что x² + y² + z² − c²t² = 0, распространяется также со скоростью c в движущейся системе отсчета: x’² + y’² + z’² − c²t’² = 0. Наложим требование симметрии по отношению к отражениям и перестановке двух систем (так что, например, B (v) = B (−v) = 1/B (v)). Получив таким образом выражения для коэффициентов a, b, A, B, убедитесь, что комбинация s² = x² + y² + z² − c²t² инвариантна при переходе из одной системы отсчета в другую (даже если она не равна нулю).
Назад: 23
Дальше: 25