Ни дня без Эйнштейна
Однажды Эйнштейн сказал: «Стыдно должно быть тем, кто бездумно пользуется чудесами науки и техники, понимая в них не более коровы, с наслаждением пасущейся на лугу, не зная ничего о ботанике». А еще он настаивал на том, что основным источником всех технических достижений являются «божественное любопытство и увлеченное стремление исследователя думать и изобретать». Из уважения к Эйнштейну я хотел бы призвать вас, дорогой читатель, иногда задумываться о всех тех повседневных услугах и технологиях, которые возникли благодаря увлеченному стремлению Эйнштейна размышлять о структуре реальности.
Заметим к тому же, что Эйнштейн не был «чистым теоретиком», не проявляющим никакого интереса к практическим приложениям. На протяжении всей своей жизни, со времен лабораторных занятий в Цюрихе и работы в патентном бюро, он сохранял интерес к экспериментальным исследованиям и практическому применению научных знаний. [Напомним также, что его дядя Якоб был инженером, работавшим вместе с его отцом над электрификацией города Мюнхена, а затем провинции Павия в Италии.] В частности, Эйнштейн получил ряд патентов на различные изобретения, начиная от устройства для измерения малых напряжений, бесшумного холодильника и гирокомпаса на магнитной подвеске и заканчивая слуховым аппаратом.
Физика присутствует во всем, что нас окружает, и при этом большая часть современной физики непосредственно вытекает из теоретических идей, сформулированных Эйнштейном. Лазеры имеют множество практических применений: от промышленной резки материалов до проигрывателей компакт-дисков, от манипуляций с отдельными биологическими молекулами до всевозможных систем управления. Стоит иногда задуматься, что высказанная в 1916 г. идея Эйнштейна об обмене энергией и импульсом между атомами и квантами света привела к предсказанию процесса, лежащего в самой основе лазера, – процесса вынужденного излучения.
Допустим, вы не слушали сегодня компакт-диски и, таким образом, упустили возможность подумать о работе Эйнштейна 1916 г., но вы, наверное, смотрели телевизор. Раз так, то представьте, что электроны в электронно-лучевой трубке разгоняются примерно до одной трети скорости света, и поэтому точный расчет их траекторий на пути к экрану требует анализа динамических уравнений специальной теории относительности, полученных Эйнштейном в июне 1905 г.
Но, возможно, вы решили не сидеть дома, а пойти за покупками. Тогда, вполне вероятно, вам придется пройти через автоматические двери с фотоэлектрическими элементами. Подумайте тогда над тем, что фундаментальный теоретический закон фотоэлектрического эффекта был сформулирован Эйнштейном в марте 1905 г. Заметьте также, что этот закон был открыт не ввиду своих применений, а в качестве побочного продукта глубоких размышлений о природе света.
А может быть, вы сядете в машину и воспользуетесь системой глобального позиционирования GPS. Подумайте тогда, что общая теория относительности Эйнштейна лежит в основе работы этой системы, имеющей сегодня все большее число применений – от управления самолетами и кораблями до управления тракторами для вспашки огромных полей с сантиметровой точностью. Фактически позиционирование основано на передаче пользователю временных сигналов, излучаемых атомными часами на орбите вокруг Земли. Программное обеспечение системы GPS принимает в расчет пространственно-временную деформацию, вызванную массой Земли. Эта деформация приводит к тому, что часы на спутниках кажутся с Земли идущими быстрее. К этому добавляется эффект орбитальной скорости, из-за которого в соответствии с теорией относительности при наблюдении с Земли кажется, что часы на орбите идут медленнее. Эти два эффекта не компенсируют друг друга, но оба, хотя и являются весьма малыми, очень важны для достижения точности хронометража, необходимой, чтобы система функционировала. Если не учитывать эффектов, возникающих согласно двум теориям относительности, система GPS станет непригодной через несколько минут.
Можно привести и другие примеры. Например, если учесть, что Эйнштейн был первым физиком, серьезно рассмотревшим идею квантов, и не только для света, но и, как мы видели, для возможных энергетических уровней материальных осцилляторов, то можно было бы вспомнить о нем в связи с многочисленными приложениями квантовой физики, и в частности, с физикой твердого тела.
Наконец, исследование научных статей, опубликованных до 1912 г. и получивших наибольшую цитируемость между 1961 и 1975 гг., показало, что из 11 статей, оказавших наибольшее влияние, четыре принадлежат Эйнштейну, а семь других написаны семью разными авторами. Что еще более примечательно, в этот список наиболее значимых научных статей XX в. не входит ни статья о квантах света, написанная в марте 1905 г., ни статья о теории относительности, написанная в июне 1905 г. На самом деле, эти две статьи были настолько основополагающими и важными и настолько изменили курс науки XX в., что спустя 50 лет после появления их просто перестали цитировать! Они стали самой сутью современной физики. Именно поэтому с удивлением обнаруживаешь, что в список статей, имеющих наибольшее влияние, вошли другие работы Эйнштейна: в частности, статьи, написанные в течение чудесного 1905 г., о которых мы не говорили выше. Так, в 1905 г. Эйнштейн написал диссертационную работу на тему «нового метода определения молекулярных размеров» и инновационную статью о броуновском движении зерен пыльцы или коллоидных частиц в суспензии. Эти работы нашли и до сих пор находят применение в самых разных областях, начиная от экологических исследований дисперсии аэрозолей в атмосфере и заканчивая исследованиями поведения частиц казеина в молоке в процессе изготовления сыра!
Конечно, помимо этого невероятно широкого перечня технологических приложений работ Эйнштейна (от лазера до изготовления сыра), важно осознавать абсолютный передел идейного научного пейзажа, произошедший благодаря его теориям: от Большого взрыва до квантовых состояний фотона, не забывая о черных дырах, двойных пульсарах, гравитационных волнах, темной энергии, управлении отдельными атомами с помощью радиационных переходов, конденсатов (Бозе –) Эйнштейна, запутанных состояниях Эйнштейна – Подольского – Розена и т. д. Наука и техника начала XXI в. имеет мало общего с основанными на ньютоновской механике и термодинамике Карно и Клаузиуса наукой и техникой начала XX в. Технологические революции ХХ в. берут начало в новых физических теориях, созданных или инициированных Эйнштейном и др. Безусловно, мы находимся на пороге новых технологических прорывов – тех, что связаны с новыми достижениями в квантовой физике. Не будем же забывать, что каждое новое техническое достижение берет начало, как сказал Эйнштейн, в «божественном любопытстве и увлеченном стремлении исследователя думать и изобретать».