«Самая счастливая мысль моей жизни»
Вернемся же к тому ключевому моменту, когда Эйнштейн осознал необходимость обобщения теории относительности, выдвинутой им в июньской статье 1905 г. (с тех пор называемой «специальной» теорией). Спустя два года после выхода статьи, специальная теория относительности привлекла интерес ряда известных (или ставших таковыми впоследствии) ученых. Выдающийся физик-экспериментатор Йоханнес Штарк предложил Эйнштейну написать обзорную статью с основным упором на идеи этой теории, которая прояснила бы ее основные принципы и следствия, а также выявила ее взаимоотношения с экспериментом. Именно в этой статье Эйнштейн прокомментировал полученные Кауфманом экспериментальные результаты в том духе, как было процитировано ранее. Эйнштейн потратил около двух месяцев на эту обзорную статью. Он по-прежнему зарабатывал на жизнь, выступая в качестве эксперта патентного бюро в Берне, и, таким образом, располагал весьма ограниченным свободным временем, которое мог посвятить этому занятию. Тем не менее он использовал все свободные моменты в течении рабочего дня, чтобы поразмышлять о физике. Именно так, в процессе глубокого размышления о значении принципа относительности, в один прекрасный день, проведенный в патентном бюро, в ноябре 1907 г. возникло то, что он назвал «самой счастливой мыслью своей жизни»:
«Я сидел в кресле в патентном бюро Берна, когда вдруг меня озарила следующая мысль: человек, находящийся в состоянии свободного падения, не может чувствовать своего веса. Я был просто поражен. Эта простая и настолько очевидная мысль произвела на меня огромное впечатление. Именно она привела меня к созданию новой теории гравитации».
Поясним физическую подоплеку этой идеи. Для начала вернемся в 1638 г., когда Галилей написал свой главный научный труд «Беседы и математические доказательства двух новых наук». Посредством удивительного сочетания логических рассуждений, мысленных и реальных экспериментов, проведенных на наклонной плоскости, Галилей смог первым осознать тот принцип, который сегодня известен как свойство «универсальности свободного падения», или «слабый принцип эквивалентности». Приведем вывод, к которому приходит Галилей в результате цепочки рассуждений, [мысленно] меняя соотношение между плотностью рассматриваемых свободно падающих тел и сопротивлением окружающей среды: «Тогда, изучая эти факты, я пришел к выводу, что в среде, полностью лишенной сопротивления, все тела будут падать с одинаковой скоростью». Вспомним, что этот факт был непосредственно проверен первыми космонавтами, ступившими на Луну. Используя отсутствие атмосферы (и, следовательно, отсутствие сопротивления, обусловленного наличием среды), они рассмотрели одновременное падение молотка и пера и констатировали, что два объекта падают абсолютно синхронно.
Конечно же, физики не ждали 1969 г., чтобы с большой экспериментальной точностью проверить предположение Галилея о том, что в отсутствии сопротивления среды все тела падают одинаково (т. е. с одинаковым ускорением) во внешнем гравитационном поле. Первые точные экспериментальные подтверждения были получены еще великим Ньютоном, который сравнивал колебания двух маятников одинаковой внешней формы, но разного состава и веса. Ньютон был также первым, кто понял, что это свойство универсальности свободного падения говорит нам нечто важное о природе гравитации. Действительно, фундаментальный закон динамики, предложенный Ньютоном в 1686 г., гласит, что сила F, действующая на тело с массой m и придающая ему ускорение a, определяется простой формулой F = ma. Эта формула говорит нам, что заданная внешняя сила F не будет придавать одинаковое ускорение различным телам. Скажем, если тело A имеет массу в два раза большую, чем тело B, то сила F придаст телу A ускорение в два раза более слабое, нежели телу B. Таким образом, можно сказать, что тело A в два раза более инертно, чем тело B. В итоге фундаментальный закон динамики Ньютона показывает, что масса тела m (мыслимая Ньютоном как количество материи) измеряет инерцию данного тела, т. е. его способность сопротивляться изменению характера движения.
Мы также видим, что любое ускорение, сообщаемое внешним взаимодействием, не обладает свойством универсальности. Например, электрическое поле будет сообщать разные ускорения различным телам. При этом ускорение каждого тела будет зависеть как от величины его массы, так и от величины его электрического заряда. Аналогичным образом ускорение, сообщенное магнитным полем, также не имеет универсальных свойств. С этой точки зрения примечательно, что гравитационное поле, такое как поле земного (или лунного) притяжения, придает одинаковое ускорение всем телам, расположенным в одной и той же точке пространства. В случае гравитационного поля приложенная к телу сила называется его весом. Таким образом, Ньютон понял, что среди всех сил только вес обладает свойством быть в точности пропорциональным массе. Другими словами, гравитационная сила пропорциональна инерции тела, на которое она действует.
Эта глубокая и таинственная связь между тяготением и инерцией была математически включена Ньютоном в его теорию гравитации. По сути, он заявил, что масса играет три разные роли, выступая в качестве меры инерции тела, меры отклика тела на внешнее гравитационное поле и, наконец, в качестве меры самого гравитационного поля, создаваемого телом. За два с лишним века, прошедших со времен работы Ньютона, ученые перестали удивляться тому замечательному факту, что масса имеет заведомо несколько различных значений.