Книга: Мир по Эйнштейну. От теории относительности до теории струн
Назад: 103
Дальше: 105

104

Математически представленная на этой диаграмме хроногеометрия (за пределами коллапсирующей звезды) есть хроногеометрия черной дыры Шварцшильда, что соответствует решению уравнений Эйнштейна, полученному Карлом Шварцшильдом и Йоханнесом Дростом в 1916 г. Для тех, кому интересно, вот математическая форма инфинитезимального квадрата интервала этой хроногеометрии: ds² = −²dt² + dr² + r² (da² + (sin a)² (db)²), где r – радиальная координата, A = 1 − 2GM / (c²r) и где a обозначает широту (рассчитанную от северного полюса), а b – долготу на сфере направлений. [Эти углы обычно обозначаются греческими буквами theta и phi, однако из-за серьезных (связанных с системой обработки текстов) проблем совместимости компьютеров, которые одному американскому компьютерному магнату удалось создать для многих, в том числе для французских издателей, мы стараемся свести к минимуму использование греческих букв.] Горизонт черной дыры Шварцшильда (вне звезды) является «цилиндром», имеющим «радиус» r = 2GM/c2.
Назад: 103
Дальше: 105