Книга: Далекое будущее Вселенной Эсхатология в космической перспективе
Назад: Литература
Дальше: 4. Вечность Кому она нужна?

Часть Вторая. Космология / физика

3. Далекое будущее

Джон Д. Бэрроу

3.1. Предсказания о будущем, пришедшие из прошлого

Первая попытка предсказать будущее вселенной на основе данных современной науки была предпринята Иммануилом Кантом в его прогрессивной космологии, которую он опубликовал в 1755 году. В XIX веке первопроходцы термодинамики обнаружили склонность закрытых систем дегенерировать от порядка к хаосу, и в 1850 году Рудольф Клаузиус вызвал призрак «тепловой смерти» вселенной. Подробно эту перспективу впервые раскрыл немецкий физик Герман фон Гельмгольц в статье, опубликованной в 1854 году [36]. Этот пессимистический долгосрочный прогноз был радостно подхвачен многими философами–материалистами и сыграл важную роль в развитии философии прогресса. Но не одни ф изики экстраполировали данные своей науки в отдаленное будущее. Чарльз Дарвин ясно видел, что продолжение эволюции приведет в далеком будущем к появлению потомков, ни по внешнему виду, ни по своей сути не схожих с предками. На последних страницах «Происхождения видов» он писал:

 

Судя по прошлому, мы можем быть уверены, что ни один из ныне живущих видов не перейдет в отдаленное будущее таким, каков он сейчас [12].

 

Холдейн и Бернал, оба пылкие материалисты, размышляли о судьбе интеллекта в отдаленном будущем. Холдейн видел, что будущее неблагоприятно для жизни в любых ее формах, однако полагал, что это отрезвляющее понимание конечной обреченности жизни не должно все же удерживать нас от

 

того ценного духовного упражнения, каковым является использование (хотя бы и неуклюжее) нашего воображения для того, чтобы представить себе наши будущие возможности.

 

Однако при этих терапевтических размышлениях важно не увлекаться чересчур оптимистическим взглядом на вещи, не воображать, что в будущем нас ждет какой-то комфортабельный золотой век. Следует помнить, что

 

существуют определенные критерии, которым должны удовлетворять всякие, даже самые фантастические, попытки предсказать будущее. Прежде всего: будущее будет не таким, каким мы хотели бы его видеть. Отцы–пилигримы были куда счастливее в Англии при короле Иакове Первом, чем могли бы быть в Америке при президенте Кулидже.

 

Бернал задавался вопросом, как должна развиваться жизнь, чтобы вести в будущем независимое существование, и приходил к представлению о какой-то бесплотной форме, резко отличной от всех форм жизни, известных нам ныне. В своей книге «Мир, плоть и дьявол» (1929) он спрашивает: что, если

 

наконец угаснет и само сознание… превратится в массу атомов в пространстве, сообщающихся друг с другом с помощью излучения и в конце концов, разрешающихся в чистый свет… эти существа… потребляют ничтожный минимум энергии… распространяются на огромные расстояния и временные периоды… Ареной жизни станет… холодная пустота космического пространства.

 

Он неохотно соглашался с тем, что в конце концов второй закон термодинамики сведет все к безжизненному однообразию, однако выражал надежду, что какая-то простая, нечеловеческая форма жизни сможет поддерживать производство информации в течение очень долгого времени, оттягивая горестный день, когда жизнь во вселенной исчезнет:

 

Второй закон термодинамики, который… приведет вселенную к бесславному концу, видимо, в конечном счете непреодолим. Но, возможно, с помощью разумной организации жизнь во Вселенной сможет продлиться в миллионы миллионов раз дольше, чем она продлилась бы без такой организации.

 

Но полное значение идеи тепловой смерти стало возможно оценить лишь после открытия космологических следствий Эйнштейновой теории относительности. В 1930–х годах идею космологической тепловой смерти обсуждали в своих широко известных популярных работах Эддингтон и Джинс; позже эта идея оказала большое влияние на литературу и научную фантастику. В 1931 году Эддингтон писал:

 

Принято думать, что в конце концов все вещество во Вселенной соберется в один довольно плотный шар одинаковой температуры; однако доктрина сферического пространства, и в особенности недавние данные, касающиеся расширения Вселенной, заставляют в этом усомниться… Сейчас распространено убеждение, что материя постепенно превращается в излучение. Если так — возможно, в конце концов Вселенная превратится в шар излучения: он будет расти, излучение — становиться все тоньше, волны его — все длиннее. Примерно каждые 1500 миллионов лет [теперь это число следует увеличить благодаря более точному измерению постоянной Хаббла] этот шар будет удваивать свой радиус, и так его размер будет увеличиваться в геометрической прогрессии вечно [14].

 

Ведущие богословы также не стеснялись обсуждать эти прогнозы. Ученые, сведущие и в науке, и в богословии, такие, как Варнс или де Шарден, встречали вызов с высоко поднятой головой. Наиболее глубоко и подробно исследует эту тему работа Уильяма Инджа, впоследствии декана собора Святого Павла в Лондоне, чья влиятельная книга «Бог и астрономы» (1934), основанная на лекциях 1931–1933 годов, полностью посвящена размышлениям о сценариях тепловой смерти, которые Джинс и Эддингтон предлагали для обсуждения в своих широко известных лекциях и писаниях. Индж, как и многие другие богословы, фактически приветствовал концепцию тепловой смерти, поскольку представление о будущем, в котором всякая жизнь неизбежно придет к концу, наносило удар по материалистической концепции самодостаточности природы и человечества. Такая «самоубийственная» вселенная не могла быть эмоционально приемлемой в качестве гостеприимного дома для человечества. Мишенью Инджа стали приверженцы «модернистской философии», будь то атеистические материалисты или богословы, очарованные идеей «эволюционирующего Бога», который подстраивается к нуждам вечно меняющейся вселенной:

 

Мысль о конце мира нестерпима лишь для философов–модернистов, находящих в идее бесконечного прогресса во времени жалкую замену благословенной надежды на жизнь вечную, а в «эволюционирующем Боге» — бледную тень Творца и Миродержца вселенной. Эта философия превращает само время в абсолютную ценность, а прогресс — в космический принцип. Именно против такой философии и направлена моя книга. Я настаиваю на том, что философия модернизма разбивается о второй закон термодинамики; не удивительно, что такое положение для нее нестерпимо и она жалко извивается, стремясь избежать его тенет [24].

3.2. Эсхатология современной физики

В наше время рассмотрением судьбы вселенной с точки зрения всех известных нам законов физики и астрономии наиболее подробно занимался Дайсон, в 1979 году [13] писавший о долгосрочной судьбе вещества и астрономических структур в расширяющейся вселенной, а также Бэрроу и Типлер в 1978 [5] и 1986–м [6] годах предложившие свои размышления об эволюции анизотропии и неоднородности вселенной, распаде протонов и других аспектах современных объединенных калибровочных теорий, а также новых форм быстрой передачи информации, и исследовавшие тепловую смерть с точки зрения гравитационной энтропии, подчеркнутой Фраучи [18] в 1982 году. Из этих исследований понятно, что предсказывать будущее беспрерывно расширяющейся вселенной — по меньшей мере, столь же сомнительное занятие, как и реконструировать ее историю. В дальнейшем появились новые исследования, добавляющие некоторые детали [30, 26] и развивающие спекулятивные размышления о природе и возможных последствиях неограниченной обработки информации [32].
Чтобы включить в свое предсказание далекого космического будущего все возможные неопределенности, мы должны оценить все динамические возможности, открытые для расширяющейся вселенной: последствия поправок к нашей нынешней теории гравитации, на данный момент незначимо малых, но имеющих значение в долгосрочной перспективе, крупномасштабные топологические ограничения, возможности сверхслабых природных сил и легчайших элементарных частиц, роль которых в далеком будущем, с расширением вселенной, может чрезвычайно возрасти, и термодинамическую судьбу материи и энергии во всех их формах. А если мы хотим предсказать будущее жизни, то должны дать ей достаточно широкое определение, которое позволило бы ей избежать полностью предсказуемой судьбы всех атомных структур. Определение жизни как информационного процесса, требующего неравновесности, а также времени и пространства для хранения информации, делает возможным вопрос о том, какие типы вселенной позволят этой минимальной жизни — обработке бесконечного объема информации — продолжаться вечно. Этот вопрос переводит «проблему времени» из области общей теории относительности на иной, более высокий уровень. Необходимо спросить, что представляет собой естественная временная шкала, в рамках которой будет совершаться обработка информации в далеком будущем? Возможно, речь идет о самом простом времени наших бытовых представлений, как обычно предполагают; но, если обработка информации примет глобальные формы, куда уместнее будет измерять ее с помощью времени, которое внутренне определяется кривизной вселенной, без обращения к каким-либо артефактам.
Интересным следствием этих исследований стало понимание того факта, что традиционная картина тепловой смерти вселенной нуждается в коренном пересмотре. Открытие Хокинга, установившего, что гравитационные поля являются носителями энтропии, означает, что максимальная возможная для вселенной энтропия может возрастать быстрее, чем реальная энтропия вещества и излучения. Таким образом, энтропия вещества и излучения вселенной может неуклонно возрастать в соответствии с нашими ожиданиями, основанными на втором законе термодинамики, однако эта энтропия будет все дальше и дальше от достижения того максимального значения, которое может иметь энтропия вселенной. Таким образом, несмотря на постоянное возрастание энтропии, вселенная уходит все дальше и дальше от термального равновесия и конечной тепловой смерти.
Этот комплекс возможностей и неизбежностей предоставляет как философам, так и богословам неисчерпаемое богатство потенциально важных вопросов для размышления:

 

• Каков ответ на конечность будущего земных (или даже любых) форм жизни?
• Что, если жизнь в каком-либо определенном смысле слова способна существовать вечно?
• Как относиться к печально знаменитым парадоксам бесконечного повторения, неразрывно связанным с понятием бесконечности [17, 31]?
• Можно ли согласовать картину жестко структурированного пространства–времени в будущем со свободой воли?

 

Проблема меняется, если наша вселенная начнет сжиматься в далеком будущем, устремляясь в конце концов к «большому краху», который наступит через конечное время. Наблюдения могут сообщить нам лишь о том, может ли эта судьба постичь видимую часть нашей вселенной [2]. Мы находимся в дразнящей близости к точке, отделяющей бесконечное расширение в будущем от коллапса, и малые флуктуации местного характера на больших масштабах во вселенной могут породить весьма крупномасштабные области коллапса, в то время как остальная вселенная продолжит вечное расширение. Интересно, что популярная сейчас инфляционная модель вселенной позволяет ожидать существование подобного неоднородного состояния в любом месте вселенной и в любое время. Если же отдельная область (или даже вся вселенная) впадет в коллапс — возможно, вслед за этим она вновь начнет расширяться, осуществив таким образом осциллирующую версию древней стоической и восточной концепции циклически возрождающегося мира.

3.3. Взлеты и падения пульсирующих вселенных

Если наша расширяющаяся вселенная, со знакомыми нам звездами и галактиками, не возникла вдруг спонтанно и из ниоткуда — каково же ее происхождение? Одно из мнений, имеющее длинную родословную, гласит, что она вовсе не имела начала. Она существовала всегда. Неизменно обаятельные мифы повествуют о циклической истории вселенной, которая периодически сгорает в великом пламени и затем, как феникс, возрождается из пепла [16, 6]. Современные космологические модели расширяющейся вселенной вторят этому сценарию. Говоря о закрытых вселенных, имеющих историю расширения, расширяющихся до максимума и затем снова сжимающихся до нуля, нельзя исключить, что этот эпизод космической истории будет повторяться и дальше. Предположим, что вселенная расширяется и сжимается снова, и снова, и снова — и так до бесконечности. Если это возможно, нет никаких причин думать, что мы находимся в первом цикле. Можно вообразить себе неисчислимое множество пульсаций в прошлом и подобное же количество — в будущем. Однако мы игнорируем тот факт, что в начале и в конце каждого цикла возникает сингулярность. Возможно, что отталкивающая гравитация остановит вселенную поблизости от точки бесконечной плотности, или же в момент сингулярности произойдет что-то еще более экзотическое… но все это — голословные предположения.
Впрочем, нельзя сказать, что такие предположения не ограничены ничем, кроме нашей фантазии. Возьмем за основу, что эволюцией от цикла к циклу управляет один из центральных принципов, управляющих жизнью всей природы — второй закон термодинамики, сообщающий нам, что полная энтропия (или беспорядок) закрытой системы никогда не может убывать. Упорядоченные формы вещества будут превращаться в беспорядочное излучение, а энтропия излучения будет постоянно возрастать. В результате будет повышаться общее давление, оказываемое веществом и излучением на вселенную, и размер вселенной будет увеличиваться в каждой последующей максимальной точке расширения. По мере развития циклов они становятся все больше и больше! Парадоксальным образом вселенная все приближается и приближается к критическому состоянию уплощенности, которое мы воспринимаем как следствие непомерного расширения. Если же оглянуться в прошлое, то мы увидим циклы, в которых вселенная была все меньше и меньше: предположение о ее начале во времени здесь оказывается излишним, хотя понятно, что жизнь могла возникнуть лишь после того, как циклы стали достаточно большими и достаточно длительными для формирования атомов и биологических элементов.
Довольно долго эта последовательность событий принималась за свидетельство того, что в прошлом вселенная не переживала бесконечного ряда пульсаций, поскольку возрастание энтропии в конце концов должно было сделать невозможным существование звезд и жизни (см., например, [20]), а число фотонов, которое мы измеряем в среднем по вселенной на каждый протон (около миллиарда), дает оценку производства энтропии в прошлом. Однако теперь мы знаем, что эта величина не обязательно должна возрастать от цикла к циклу. С ее помощью нельзя измерить возрастание энтропии. В момент обращения развития вселенной все смешивается, а в дальнейшем число протонов, сравниваемое с числом фотонов, устанавливается достаточно ранними процессами. Одной из проблем такого рода может оказаться проблема черных дыр. Если уж крупные черные дыры, вроде тех, что мы наблюдаем в центре многих галактик, включая Млечный Путь, формируются, они будут иметь тенденцию накапливаться во вселенной от цикла к циклу, становясь все массивнее, пока наконец не поглотят всю вселенную, конечно, при условии, что они не разрушаются при каждом обращении или не превращаются в отдельные «вселенные», которые мы не можем ни увидеть, ни ощутить гравитационно. Смолин [29] предложил занимательную схему, согласно которой, вслед за коллапсом черная дыра разворачивается в новую расширяющуюся вселенную, параметры физических констант в которой немного сдвинуты. В долгосрочной перспективе это может привести к возникновению целой популяции новых вселенных, преобладать в которой будут производящие больше всего черных дыр. Очень небольшие сдвиги в физических константах могут снизить производство черных дыр в нашей вселенной. Однако вполне возможно, что такие вселенные не допускают существования наблюдателей, поэтому наш сценарий должен звучать так: мы, скорее всего, находимся во вселенной, которая максимизирует производство черных дыр, при условии, что в ней могут существовать наблюдатели.
Любопытный постскриптум к истории циклических вселенных открыт недавно Мариушем Дабровски и мною [4]. Мы показали, что если космологическая константа Эйнштейна существует, то при любом, сколь угодно малом положительном значении ее эффект отталкивающей гравитации в конце концов прекратит пульсацию циклической вселенной. Осцилляции будут становиться все больше и больше, пока наконец вселенная не станет так велика, что космологическая константа возобладает над притяжением материи. Когда это случится, вселенная впадет в фазу ускоряющегося расширения, из которой она уже никогда не сможет выйти, если только в отдаленном будущем каким-то таинственным образом не исчезнет вакуумная энергия, создающая давление космологической константы. Таким образом, при наличии положительной космологической константы пульсирующая вселенная может в конце концов избежать судьбы бесконечных осцилляции. Если в прошлом и существовало бесконечное число осцилляции, то в настоящем мы можем ожидать, что находимся в последнем бесконечно расширяющемся цикле, если только это тот самый цикл, в котором может существовать и развиваться жизнь.
Еще один путь, которым вселенная может избежать какого-либо начала, — пережить экзотическую последовательность эволюционных шагов, созданных историей вечного расширения [27]. Не видно причин, по которым последовательность расширений, исходящая из уже расширяющихся доменов, вообще должна была иметь какое-то общее начало. Для каждого отдельного домена возможно иметь историю, начинающуюся с определенного квантового события расширения, но весь процесс в целом может просто протекать стационарно — ныне и присно и во веки веков.

3.4. Рынок прогнозов

Всякий астроном, вступающий на рынок прогнозов, должен столкнуться со следующими вопросами:

 

• Будет ли «конец» или асимптота — в любом смысле?
• Идет ли речь только о «нашем» конце, о конце жизни вообще, о конце материи, пространства, времени или всей вселенной?
• Будет ли конец внезапным или постепенным?
• Возможны ли длительные циклы поведения вселенной или же естественного или искусственного отбора вселенных в какой-либо форме?
• Будет ли в вечно расширяющейся вселенной что-то постоянно меняться, или мы движемся к стазу?
• Каково влияние на вселенную существования космологической константы, или энергии космического вакуума?

 

Постепенный конец может стать результатом множества мелких и медленных перемен в природе вселенной, происходящих на протяжении эонов космического времени. Природные константы, текущие значения которых во многих случаях кажутся идеально «настроенными» на существование жизни, основанной на атомах, могут меняться, очень медленно, но все же меняться [37]. Возможно, рано или поздно они выйдут за пределы того узкого окна, что позволяет существовать стабильным атомам и звездам. Если существуют иные измерения пространства, то любые изменения в размерах этих неведомых нам измерений могут повлечь за собой перемены такого же масштаба в значениях тех «констант», которыми мы привыкли определять физическую природу в нашем трехмерном пространстве.
Мы уже начали понимать, сколь важные физические параметры, вроде баланса вещества и антивещества в космосе или количества основных природных сил, могут возникать из процесса нарушения симметрии, приводящего к весьма разным результатам в различных частях вселенной. Вселенная расширяется и стареет, и однажды это приведет к тому, что различные ее регионы, обладающие очень разными фундаментальными физическими характеристиками, столкнутся с драматическими результатами на границе.
Мы обнаружили свидетельства существования множества черных дыр, возникших в результате коллапса недолговечных массивных звезд, а также гигантских черных дыр в центрах галактик, где они растут, поглощая звезды и газ вокруг себя. Рано или поздно очень большая доля материи во вселенной может оказаться внутри черных дыр, однако не останется там навечно. Хокинг [22] показал, что черные дыры будут медленно «испаряться» — терять свою массу благодаря порождению квантовых частиц, возвращая в пространство релятивистские частицы и излучение в термальном спектре. Что происходит на последней, взрывной стадии этого процесса испарения — пока для нас загадка. На первый взгляд кажется, что в пространстве и времени останется единственная дыра, как после большого схлопывания. Если это так, значит, со временем вселенная окажется испещренной такими дырами в пространстве–времени — местами, где могут нарушаться законы природы. Из них может исходить все что угодно: фотоны, частицы, звезды, даже целые вселенные.
Все возможные внезапные и драматические концы — нас или вселенной вокруг нас — следует рассматривать, исходя из того, что признают возможным современные теории в области физики высоких и низких энергий. Состояние вакуума, в котором находится вселенная сейчас, признается низшим из возможных энергетических состояний — плодом последовательных нарушений симметрии, которые в прошлом опускали энергию вселенной все ниже и ниже. Но что, если нас ждут новые нарушения симметрии? Что, если нам угрожает следующее понижение с высокой вероятностью того, что вся вселенная внезапно изменится? Новый вакуум может иметь совсем иные характеристики, чем тот, что нам известен. Например, все частицы в нем могут быть лишены массы. Мы можем просто исчезнуть в мгновение ока. Если расширение вселенной предоставило нам место на «мелком шельфе» потенциального ландшафта, — кто гарантирует, что внезапный толчок не столкнет нас с обрыва навстречу новому, более глубокому энергетическому минимуму? Высокоэнергетические события во вселенной вполне могут сыграть роль такого толчка.
Если столкновения звезд или черных дыр порождают космическое излучение достаточно высокой энергии, то это излучение способно спровоцировать переход целой области пространства в новый вакуум [23, 35]. Конечно, это изображение вакуумного ландшафта спекулятивно. Мы недостаточно знаем этот ландшафт в целом, чтобы с уверенностью говорить о том, находимся ли мы уже на нижнем уровне или существуют иные вакуумы, в которые случайно либо целенаправленно может провалиться состояние материи нашего мира. Когда воображаешь себе эту радикальную возможность необъявленной перемены в базовых характеристиках сил природы, возникает искушение изобразить ее в виде логического завершения идеи прерывистого равновесия, предложенной Нильсом Элдриджем и Стивеном Джеем Гулдом [15]. Они предположили, что ход биологической эволюции, идущей на земле путем естественного отбора, представляет собой не ровный поступательный процесс, а серию медленных изменений, перемежаемых внезапными скачками. Его можно представить себе, как движение предмета, влекомого некоей сторонней силой, вверх–вниз по крутым горкам. Паттерн изменений в этих условиях выглядит так: медленный подъем в гору, затем, по достижении вершины — быстрый прыжок на склон следующей горы и снова медленный равномерный подъем [1].
Тесная связь нашей формы биохимической жизни с весьма специфическими совпадениями значений и свойств различных сил природы означает, что любое изменение состояния вакуума, скорее всего, обернется для нас катастрофой. Мы окажемся в новом мире, где могут существовать иные формы жизни, но нет никаких оснований полагать, что они окажутся лишь малым эволюционным отклонением от наших биохимических форм.
Если вселенная двигается в этом направлении, то, возможно, в один из будущих эонов ее ждет потрясение. Что касается загадки, почему сила лямбда должна вступить в игру так скоро, то кажется маловероятным, чтобы эпоха, в которую «падение»
может произойти, была близка ко времени существования человечества во вселенной, — разве что она как-то связана с лямбдой или присутствие жизни способно как-то ускорить это великое падение. Одним словом, пессимисты, не отчаивайтесь: все может быть еще хуже, чем вы думаете.
В физике элементарных частиц мы привыкли к догме, что всякая нарушенная симметрия при наличии достаточно высокой энергии в конце концов восстанавливается. Однако мы не считаем, что асимметрии рано или поздно нарушаются при низком уровне энергий и температур. Возможно, это убеждение неверно. Если всякая симметрия нарушается при достаточно низких температурах, то вполне возможно, что в отдаленном будущем, когда вселенная существенно остынет, U(l) симметрия электромагнетизма нарушится, придав всем фотонам положительную массу. Результаты могут быть столь же драматичны. Столь же внезапным может быть конец, если мы натолкнемся на локальную сингулярность пространства–времени или будем застигнуты подступающей гравитационной ударной волной.
Но самое замечательное, что может произойти в вечно расширяющейся вселенной с бесконечным будущим, — это способность образовать квантовый тоннель обратно в «ничто». Сейчас многие квантовые космологи пытаются объяснить вселенную как в некотором смысле выскочившую из «ничего». В большинстве современных сценариев этого события вероятность появления чего-то из ничего гораздо больше, чем вероятность появления ничего из чего-нибудь. Однако при бесконечном времени ожидания любой процесс, вероятность которого конечна, рано или поздно произойдет.

3.5. Будущее вакуума

Вакуумная энергия вселенной, проявляющаяся в общей теории относительности Эйнштейна как космологическая константа, может «отменить» момент возникновения вселенной, оказывать влияние на начальные моменты ее жизни и управлять ее расширением в настоящее время. Но самый значительный ее эффект еще впереди: это — власть над будущим вселенной. Энергия вакуума, проявляющаяся как космологическая константа Эйнштейна, останется константой и тогда, когда все прочие вклады в плотность вещества во вселенной: звезды, планеты, излучение, черные дыры будут рассеяны благодаря расширению. Если (как следует из наших наблюдений) энергия космического вакуума сравнительно недавно дала начало ускоряющемуся процессу расширения вселенной и это расширение будет продолжаться вечно, значит, в будущем ее власть возрастет до непреодолимой силы. Вселенная будет расширяться все быстрее и быстрее — вечно. Все быстрее будет падать температура, а звезды будут истощать свои запасы ядерного топлива и взрываться, оставляя после себя лишь плотные мертвые тела из тесно упакованных холодных атомов или концентрированных нейтронов либо крупные черные дыры. Даже гигантские галактики и скопления галактик постигнет та же судьба: по мере того как движение составляющих их звезд будет постепенно замедляться благодаря утечке гравитационных волн и излучения, они начнут спирально закручиваться внутрь себя. Огромные черные дыры в их центре будут поглощать все звезды, всю материю вокруг себя и становиться все больше. Наконец все эти черные дыры испарятся благодаря процессу, открытому Хокингом.
Удивительнее всего в космической энергии вакуума то, что в конце концов она побеждает все иные формы материи и энергии в борьбе за определение формы пространства и скорости расширения вселенной. Неважно, какова была структура вселенной в былые дни, прежде чем пришла к власти энергия вакуума; как все дороги древности вели в Рим, так и все вечно расширяющиеся вселенные стремятся к одной вполне определенной ускоряющейся вселенной, так называемой вселенной де Ситтера по имени Виллема де Ситтера, знаменитого голландского астронома, нашедшего в 1917 году это решение уравнений общей теории относительности Эйнштейна. Эта вселенная отличается тем, что она — самая симметричная из всех возможных.
Это свойство ускоряющейся вселенной — потерю памяти о том, как она начиналась, иногда называют «характеристикой космической безволосости». Этот забавный термин подчеркивает тот факт, что все ускоряющиеся вселенные становятся одинаковыми: они не сохраняют индивидуальных отличительных черт (метафорически говоря, причесок). Это неотвратимое соскальзывание в одно–единственное будущее состояние сигнализирует о том, что при ускорении вселенной происходит потеря информации. Расширение идет так быстро, что информационное содержание сигналов, посылаемых через вселенную, также максимально быстро деградирует. Все сглаживается; различия в скорости расширения в разных направлениях при достаточно высокой скорости исчезают; распределение материи в космосе не создает новых участков сгущения; местное гравитационное притяжение проигрывает последнюю битву с непреодолимым отталкиванием, обусловленным силой лямбда.
Такое действие ускоряющегося космологического расширения имеет важные последствия для любых рассуждений о жизни в отдаленном будущем. Если жизнь требует для своего существования накопления и обработки информации, то мы должны спросить себя, всегда ли вселенная будет предоставлять условия для этого. Дайсон [13], а также Бэрроу и Типлер ([6], глава 10) показали, что при отсутствии энергии вакуума, когда расширение не ускоряется, имеются широкие возможности для сохранения этой самой основной формы жизни. Информация может храниться в состоянии элементарных частиц, которые приспособлены для этого гораздо лучше, чем наши нынешние компьютеры. Для неограниченного продолжения обработки информации живым системам необходимо создавать и поддерживать отклонения от абсолютной однородности температуры и энергии во вселенной. При отсутствии ускоряющей энергии вакуума это всегда возможно, хотя, вероятно, и требует, чтобы жизнь использовала разницу гравитационных энергий, поддерживающую разность скоростей расширения вселенной на разных направлениях. Плотность энергии, поддерживающая эти различия, падает намного медленнее, чем у любой обычной формы материи. Небольшие отклонения в скорости расширения вселенной на различных направлениях могут привести к тому, что излучение будет охлаждаться с немного разной скоростью в разных направлениях. Этот температурный градиент можно будет использовать для совершения работы или для обработки информации. Конечно, это не означает, что жизнь в какой бы то ни было форме будет существовать вечно [11], не говоря уж о том, что она должна существовать вечно; речь идет лишь о логической и физической возможности, основанной на известных нам законах физики и предполагающей отсутствие энергии вакуума, пронизывающей вселенную.
Однако, как показали Бэрроу и Типлер (см. [6], р. 668), если энергия вакуума существует, все меняется — и меняется к худшему. Всякая эволюция неизбежно ведет к однородному состоянию, характеризующему ускоряющуюся вселенную де Ситтера. Обработка информации не может длиться вечно: она должна прекратиться. Чем ближе подходит материальная вселенная к состоянию однородности, тем меньше в ней полезной энергии будет доступно. Если энергия вакуума существует, но во вселенной недостаточно вещества, чтобы превратить ее расширение в сжатие прежде, чем энергия вакуума обретет контроль над расширением и начнет ускорять его, то вселенная, по–видимому, обречена на безжизненное будущее. Рано или поздно ускорение приводит к появлению коммуникационных барьеров. Мы уже не сможем получать сигналы из отдаленных областей вселенной. Мы окажемся как бы внутри черной дыры. Та часть вселенной, которая сможет влиять на нас (или на наших потомков) и с которой мы (они) сможем вступать в контакт, будет конечной. Чтобы избежать этого клаустрофобического будущего, было бы нужно уменьшение энергии вакуума. Мы полагаем, что она всегда должна оставаться постоянной, но возможно, что она незаметно уменьшается. Или, может быть, в один прекрасный день она внезапно перейдет в излучение и обычные формы вещества, и оставленная в покое вселенная понемногу соберется с силами и будет постепенно использовать гравитацию для того, чтобы вновь собирать материю, обрабатывать информацию. Однако возможно, что последствия будут и не столь благоприятны. Мы уже видели, что исчезновение энергии вакуума может предвещать падение вселенной даже на еще более низкий энергетический уровень, которому будут сопутствовать резкие перемены в ее физической природе. Возможно даже, что вакуум перейдет в новый вид материи, обладающий еще большей отталкивающей силой, чем сила лямбда. Если ее давление будет еще более негативным, в будущем нас ждут драматические события. Через какое-то конечное время расширяющаяся вселенная может превратиться в сингулярность бесконечной плотности.

3.6. Изменчивые константы

Когда мы оцениваем долгосрочные космологические перспективы, важно точно знать, что в космосе не может измениться, сколько бы мы ни ждали. Такие неизменные величины у физиков принято называть «природными константами». Предполагается, что они всегда одни и те же. Существуют различные полученные в наблюдениях и экспериментах строгие ограничения, которые подтверждают это предположение, и стандартные модели физики элементарных частиц и космологии большого взрыва исходят именно из этой неизменности. Однако, если одной или нескольким из этих констант суждено измениться, пусть величина изменения сейчас и кажется совершенно незначительной для каких бы то ни было практических целей, в отдаленном будущем это может радикально изменить картину нашей вселенной. До недавних пор у нас не было никаких положительных свидетельств того, что некоторые традиционные природные константы — не просто константы. Разрабатывались теории, рассматривающие последствия изменений G, гравитационной постоянной Ньютона, но этот вопрос ставился преимущественно в чисто теоретическом ключе с целью установить ограничения на допустимые вариации с помощью наблюдательных данных. Однако, к общему изумлению, серия тщательных наблюдательных исследований [37, 38, 39] показала, что в красном смещении, между единицей и тройкой, тонкая структура становится приблизительно на семь миллионных долей меньше.
Теоретическое исследование [7, 8] этой ситуации открыло весьма необычную черту вселенных с изменчивостью таких констант, как константа тонкой структуры α или G. Если вселенная плоская и ее космологическая константа равна нулю, то значение α будет оставаться постоянным в раннюю эру излучения, но начинает изменяться в пылевую эру, пока кривизна вселенной или энергия вакуума не начнут влиять на расширение. Когда кривизна вселенной или энергия вакуума контролируют расширение, все изменения а прекращаются. Таким образом, для жизни может быть существенно, что кривизна или энергия вакуума в нашей вселенной не слишком малы. Поскольку чем меньше эти эффекты, тем дольше будет возрастать значение α.
В конце концов оно станет слишком большим для существования атомов, и возможность жизни, как мы ее знаем, будет утеряна. В космологической истории существует определенная ниша для существования жизни, основанной на атомных структурах [9]. Существование крайне малого уровня пространственной кривизны, создающего открытую вселенную, или ненулевой энергии вакуума предотвращает возрастание константы альфа и позволяет атомам существовать в течение намного более долгих сроков.
Эти соображения показывают, что для создания достоверных и долгосрочных прогнозов о будущем вселенной и тех форм материи, которые смогут в ней существовать, необходимо полностью понимать феномен постоянства традиционных природных констант.

3.7. если эта теория верна — она не может быть оригинальной

Есть и последняя линия рассуждений, о которой также не следует забывать. В науке мы привыкли пренебрегать крайне маловероятными событиями несмотря на то, что они в принципе возможны. Например, законы физики допускают, что мой письменный стол взлетит и застынет в воздухе. Необходимо всего лишь, чтобы все его молекулы в ходе своих случайных движений одновременно устремились вверх. Такая возможность настолько невероятна даже в масштабе 15 миллиардов лет истории вселенной, что для всех практических целей о ней можно не вспоминать. Однако, когда перед нами бесконечное будущее, у любой фантастически невероятной физической случайности в конечном счете появляется немалый шанс воплотиться в жизнь. Энергетическое поле, сидящее на дне вакуумного ландшафта, рано или поздно совершит фантастический, невероятный прыжок вверх — прямо на вершину холма. Тогда для нас расширяющаяся вселенная начнется заново. Или, что еще более невероятно,
вся наша вселенная реализует ничтожную вероятность квантового перехода в другой тип вселенной? Ни один обитатель вселенной, испытавший столь радикальное преобразование, не выживет. Впрочем, по мере роста системы вероятность ее драматического квантового преобразования уменьшается. Гораздо вероятнее, что такую перестройку пройдут отдельные объекты вселенной (например, камни, черные дыры или люди), чем то, что это произойдет со вселенной в целом. Эта возможность достаточно важна не столько потому, что мы можем предсказать, что может случиться в течение бесконечного времени, сколько потому, что предсказать это невозможно. Когда перед нами бесконечность, все, что может случиться, в ней обязательно случится. Хуже того (или лучше того), это будет случаться бесконечно часто.
На глобальном уровне вселенная может быть самовоспроизводящейся, но это лишь обеспечивает существование других расширяющихся областей с новыми началами. Быть может, кто-то из ее обитателей когда-нибудь овладеет техниками, которые будут нуждаться в возникновении этих локальных инфляции для того, чтобы упорядочивать их последствия и управлять ими. Для нас же бытие представляет какую-то странную симметрию. Возможно, однажды вселенная возникла из квантового вакуума, сохранив кое–какие незначительные воспоминания о его энергии. В далеком будущем эта энергия вакуума повторно заявит о своем присутствии и снова ускорит расширение, на этот раз, возможно, навсегда. Самовоспроизведение на глобальном уровне может положить начало новым большим взрывам, новым физикам, новым измерениям; но нашей мировой линии, нашей части вселенной, похоже, суждено в конце концов навсегда обратиться в однообразный, беззвездный и безжизненный пейзаж.

 

Хотел бы поблагодарить Мэри Энн Мейерс и Фонд Темплтона за приглашение на этот симпозиум, участников — за многочисленные и плодотворные дискуссии, а также Джорджа Койне и работников Понтификальной академии наук — за их неизменное гостеприимство.

Литература

1. Вак, P., How Nature Works (Oxford University Press, Ocford, and Copernicus, New York, 1996).
2. Barrow, J. D., Impossibility (Oxford University Press, Oxford, 1998).
3. Barrow, J. D., "Life, Universe, and Almost Everything", Physics World, 12, 31–35 (1999).
4. Barrow, J. D., and Dabrowski, M., "Oscillating Universes", Mon. Not. Roy. Astron. Soc, 275, 850–62 (1995).
5. Barrow, J. D., and Tipler, F. J., "Eternity Is Unstable" Nature, 276, 453 (1978).
6. Barrow, J. D., and Tipler, F. J., TheAnthropic Codmobgical Principle (Oxford University Press, Oxford, 1986).
7. Barrow, J. D., Sandvik, H., and Magueijo, J., "The Behaviour of Varying-Alpha Cosmologies", Phys. Rev. D., 65, 063504 (2002).
8. Barrow, J. D., Sandvic, H., and Magueijo, J., "A Simple Varying-Alpha Cosmology", Phys. Rev. Lett., 88, 031302 (2002).
9. Barrow, J. D., Sandvik, H., and Magueijo, J., "Anthropic Reasons for Non-zero Flatness and L", Phys. Rev. D., 65, 1235XX (2002).
10. Bernal, J. D., The World, the Flesh, and the Devil, 2nd ed. (Indiana University Press, Bloomington, 1969, 1st ed,. 1929), 63.
11. Clark, S. R.L., How to Live Forever (Routledge, London, 1995).
12. Darwin, C, On the Origin of Species by Means of Natural Selection, 2nd ed. (Murray, London, 1860), 489.
13. Dyson, F., "Life in an Open Universe", Rev. Mod. Phys., 51, 447 (1979).
14. Eddington, AS., "The End of the World: From the Standpoint of Mathematical Physics", Nature, 127, 447–53 (1931).
15. Eldredge, N., Macro-Evolutionary Dynamics (Mc-Graw-Hill, New York, 1989).
16. Eliade, M., The Myth of the Eternal Return (Pantheon, New York, 1934).
17. Ellis, G. F.R., and Brundrit, G. B., "Life in the Infinite Universe", Q. I. Roy. Astron. Soc, 20, 37 (1979).
18. Frautschi, S., "Entropy in an Expanding Universe", Science, 217, 593 (1982).
19. Haldane, J. B.S., The Last Judgement (Harper Bros., New York, 1927), 38.
20. Harrison, E. R., Cosmology (Cambridge University Press, Campridge, 1981), 299–300.
21. Harrison, E. R., "The Natural Selection of the Universes", Q I. Roy. Astron. Soc, 36,22. 193 (1995).
22. Hawking, S. W., "Black Hole Explosions", Nature, 248, 30 (1974).
23. Hut, P., and Rees, M. J., "How Stable Is Our Vacuum?", Nature, 302,508 (1983).
24. Inge, W., God and the Astronomers (Longmans Green, London, 1934), 28.
25. Kant, I., Universal Natural History and Theory of the Heavens, trans. W. Hastie (Greenwood Pub., New York, 1968), 59–70.
26. Krauss, L., and Starkman, G., "Life, the Universe, and Nothing: Life and Death in an Ever-Expanding Universe", Astrophys, J., 531, 22–31 (2000).
27. Linde, A., "The Self-Reproducing Inflationary Universe", Sci. Amer. 5, November, 48–55 (1994).
28. Sandvik, H. B., Barrow, J. D., and Magueijo, J., "A Simple Varying-Alpha Cosmology", Phys. Rev. Lett, 88, 031302 (2002).
29. Smolin, L., "Did the Universe Evolve?", Class Q. Gravity, 9, 173 (1984).
30. Starobinskii, A. A., "Future and Origin of Our Universe: Modern View", Phys. Grav. Cosmoi, 6, 157–63 (2000).
31. Tipler, F. J., "A Brief History of the Extraterrestrial Intelligence Concept", Q. I. Roy. Astron. Soc, 22, 133 (1981).
32. Tipler, F. J., The Physics of Immortality (Doubleday, New York, 1995).
33. Tolman, R. C., "On the Problem of the Entropy of the Universe as a Whole", Phys. Rev., 37, 1639–1771 (1931).
34. Tolman, R. C., "On the Theoretical Requirements for a Periodic Behaviour of the Universe", Phys. Rev., 38, 1758 (1931).
35. Turnerm V. S., and Wilczek, F., "Is Our Vacuum Metastable?", Nature, 298, 633 (1982).
36. von Helmholtz, H., "On the Interaction of the Natural Forces", reprinted in Popular Scientific Lectures, ed. M. Kline (Dover, New York, 1961).
37. Webb, J. K., Flambaum, V. V., Churchill, C. W., Barrow, J. D., and Drinkwater, M. J., "Evidence for Time Variation of the Fine Structure Condtant?", Phys. Rev. Lett., 82, 884–87 (1999).
38. Webb, J. K., Murphy, V., Flambaum, V. V., Dzuba, V., Barrow, J. D., Churchill, C. W., Prochaska, J., and Wolfe, A., "Further Evidence for Cosmological Evolution of the Fine Structure Constant", Phys. Rev. Lett, 87, 0913301 (2001).
39. Webb, J. K., Murphy, M., Flambaum, V. V., Dzuba, V., Barrow, J. D., Churchill, C. W., Prochaska, J., and Wolfe, A, "Possible Evidence for a Variable Fine Structure Constant from QSO Abruption Lines — I. Motivations, Analysis, and Results", Mon. Not. Roy. Astron. Soc, 327, 1208 (2001).
Назад: Литература
Дальше: 4. Вечность Кому она нужна?