Глава 3
Нелокальность и истинная случайность
Мы уже знаем, что довольно просто получить в игре Белла счет 3. К примеру, достаточно заранее договориться каждый раз выдавать один и тот же результат. Но мы также видели, что нельзя указать никакую локальную стратегию, применяя которую независимо друг от друга, Алиса и Боб могли бы выигрывать чаще, чем три раза из четырех. Это было основным выводом главы 2.
Но если два игрока действительно побеждают, то есть получают более 3 очков из четырех, какой вывод мы обязаны сделать? Первое и самое очевидное заключение сводится к двум вариантам: либо они воздействуют друг на друга каким-то неуловимым образом, либо каким-то образом жульничают. Но предположим, что в наших силах исключить эти две возможности. Тогда можно допустить, что мы ошиблись в умозаключениях, представленных в главе 2. Многие физики и философы потратили годы на изучение этого. Почему бы и вам не потратить на это несколько минут? Помните, что никогда нельзя принимать доводы на веру. У каждого есть право и долг проверять научные рассуждения самому. Очень важно, что доказательство невозможности выиграть в игру Белла без коммуникации очень простое и ясное. Действительно, каждый из двух игроков может выбрать только одну из четырех возможных стратегий. Таким образом, есть всего лишь 4 × 4 = 16 возможных комбинаций стратегий и ни одна из них не дает возможности выигрывать чаще, чем три раза из четырех (см. таблицу 2.1 в главе 2). Просмотрите доказательство еще раз и попробуйте объяснить его приятелю.
Есть все основания быть уверенным в бесспорности этого доказательства. Оно совершенно надежно и проверено тысячами физиков, философов, математиков и специалистов по информатике и вычислительной технике. Но зачем тогда вообще обсуждать проблему выигрыша со счетом больше, чем три из четырех, если это считается невозможным? Это действительно жгучий вопрос. Доказательство настолько просто, что, если бы не квантовая физика, никому не было бы до него дела. Оно так и оставалось бы очевидным фактом среди кучи других неинтересных очевидных фактов, не применимых ни к чему стоящему. Есть единственная причина приглядеться к этому вопросу: дело в том, что современная физика может выиграть в эту игру, даже если игроки не обмениваются информацией и не жульничают.