Книга: Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса
Назад: 44
Дальше: 46

45

Интерферометр используется для того, чтобы задержать ту часть фотона, которая «вовремя», и добиться ее совпадения с задержанной частью того же самого фотона. Две части инфракрасного фотона, которые приходят к Бобу, попадают на соединитель – эквивалент полупрозрачного зеркала. Фотон имеет на выбор два выхода из интерферометра, на каждом из которых имеется фотонный детектор. Таким образом, мы вновь получаем двоичный результат.
Каждый из двух интерферометров оснащен фазомодулятором. На практике это компонент, который немного удлиняет оптический кабель и тем самым задерживает ту часть инфракрасных фотонов, которые «вовремя». Удлинение получается совсем небольшое, меньше длины волны фотона, поэтому оно не влияет на тот факт, что две части каждого фотона встречаются на последнем соединителе каждого интерферометра в одно и то же время. Чтобы достичь этого, можно, например, использовать пьезоэлектрический элемент, который будет чуть-чуть растягивать оптоволокно.
Важно, чтобы два фотона всегда имели один шанс из двух быть обнаруженным каждым из двух детекторов. С другой стороны, вероятность того, что оба инфракрасных фотона одной пары будут обнаружены верхним детектором, и следовательно, что a = 0 = b, зависит от способа, которым мы удлиняем оптические пути в местах нахождения Алисы и Боба, или как, сказали бы физики, она зависит от суммы фаз. Таким образом, корреляция между результатами Алисы и Боба зависит от этих небольших удлинений у Алисы и у Боба. С формальной точки зрения эта форма запутанности, известная как запутанность временных интервалов, эквивалентна поляризационной запутанности (W. Tittel, G. Weihs: Quantum Information and Computation 1, 3–56 (2001)). Преимущество ее – в лучшей приспособленности к оптическим волокнам, а кроме того, легко также увеличить количество временных интервалов и тем самым изучить случаи с более чем двумя возможными результатами.
Назад: 44
Дальше: 46