Книга: Искусственный интеллект
Назад: Глава вторая. Путь к сверхразуму
Дальше: Глава третья. Типы сверхразума

Усовершенствование когнитивных способностей человека

Третий путь создания интеллекта, превосходящего человеческий, это улучшение функционирования биологического мозга. В принципе, этого можно было бы достичь без применения технологий, а за счет селекции. Однако любая попытка запустить классическую программу евгеники столкнется и с политическими, и этическими препятствиями. Кроме того, для получения сколько-нибудь значимых результатов — если только отбор не будет чрезмерно строгим — потребуется множество поколений. Задолго до того как такая программа принесет плоды, человечество в результате развития биотехнологий получит прямой контроль над генетикой и нейробиологией, что сделает ненужными проекты по селекции людей. Поэтому мы обращаем внимание на методы, которые приведут к результату намного быстрее: на протяжении жизни нескольких поколений и даже одного, — для этого есть потенциальные возможности.

Мы научились повышать свои индивидуальные познавательные, или когнитивные, способности разными способами, в том числе не пренебрегая и традиционными, например обучением и тренировкой. Развитие нервной системы можно ускорить за счет таких низкотехнологичных методов, как оптимизация внутриутробного и младенческого питания, устранение из окружающей среды свинца и других нейротоксичных загрязнений, уничтожение паразитов; обеспечение полноценного сна и физической нагрузки; профилактика заболеваний, влияющих на умственную деятельность. Безусловно, каждое средство из перечисленных помогает развитию когнитивных функций, хотя, скорее всего, значимость успеха слишком незначительна, особенно в обществах, где дети уже получают вполне качественное питание и образование. Действуя лишь таким образом, мы вряд ли сумеем развить в ком-нибудь мощный сверхинтеллект, но свою посильную лепту эти методы все-таки вносят, в частности, с их помощью мы улучшаем положение малоимущих и расширяем в мировом масштабе возможности для появления одаренных людей. (Распространенной проблемой многих бедных стран, не имеющих выхода к морю, остается снижающийся на протяжении жизни уровень интеллектуальных способностей из-за дефицита йода. Ситуация абсолютно неприемлемая, поскольку в наше время вопрос решается крайне просто — это обогащенная йодом столовая соль, которая по стоимости дороже обычной всего на несколько центов на одного человека в год.)

Большего эффекта удается добиться с помощью медико-биологических средств. В настоящее время появляются лекарственные препараты, способные, как утверждают, улучшать память, концентрацию внимания и умственные силы — по крайней мере, некоторым они помогают. (Работая над этой книгой, я заправлялся кофе и поддерживал силы никотиновой жвачкой.) Действенность сегодняшних лекарств, стимулирующих умственные способности, весьма нестабильна, относительна и многими отрицается; вполне вероятно, будущие ноотропные средства, или нейрометаболические стимуляторы, начнут оказывать больше помощи и обладать меньшими побочными эффектами. Однако вряд ли стоит уповать, что когда-нибудь придумают химический препарат, который, будучи введен в здоровый мозг, обеспечит резкий скачок интеллектуальных способностей человека, — как с неврологической, так и эволюционной точек зрения это кажется неправдоподобным. Когнитивная деятельность мозга человека зависит от хрупкой гармонии многих факторов, особенно на критически важной стадии эмбрионального развития, поэтому для улучшения такой самоорганизующейся системы, как функциональность мозга, потребуется скорее не примитивная подкормка неким зельем, а обеспечение ее бережным балансом, тонкой настройкой и тщательной культивацией.

Более мощные инструменты мы получим с помощью генетических манипуляций, не полагаясь на действие психотропных лекарственных средств. Вернемся снова к идее генетического отбора. Вместо попыток внедрять евгенические программы, корректируя схемы скрещивания, можно использовать механизмы клеточного отбора на уровне эмбрионов и гамет. В ходе процедуры экстракорпорального оплодотворения (ЭКО) перед имплантацией эмбриона уже проводится генетическая диагностика, чтобы выявить моногенные нарушения вроде болезни Хантингтона и предрасположенность к некоторым развивающимся в более поздние периоды жизни человека заболеваниям, таким как рак молочной железы. Генетическую диагностику используют для определения пола будущего ребенка, а также для сравнения типа человеческих лейкоцитарных антигенов с данными его родных брата или сестры, по отношению к которым будущий новорожденный может выступить донором стволовых клеток, если они больны. За следующие десять или двадцать лет заметно вырастет количество факторов, которые можно будет использовать в качестве критериев отбора — как позитивного, так и негативного. Значимым фактором прогресса генетики поведения являются быстро снижающиеся затраты на генотипирование и секвенирование генома. У нас на глазах появляется возможность проводить комплексный анализ характеристик всего генома, что значительно обогатит наши знания элементов генетической архитектуры, отвечающей за мыслительную и поведенческую деятельность человека. Это даст возможность использовать в качестве критерия отбора любую черту личности, не относящуюся к наследственным, в том числе когнитивные способности. Для отбора эмбрионов не требуется глубокого понимания причинно-следственных связей, которые в результате сложного взаимодействия между генами и окружающей средой приводят к тому или иному фенотипу, — необходимо лишь иметь генетические данные (правда, много), коррелирующие с интересующими исследователей признаками.

Можно сделать некоторые ориентировочные оценки коэффициентов максимального прироста, которые получаются при различных сценариях отбора.

Таблица 5. Максимальный прирост коэффициента умственного развития (IQ) в результате выбора из разного количества эмбрионов

Отбор

Дополнительные баллы IQ

1 из 2

4,2

1 из 10

11,5

1 из 100

18,8

1 из 1000

24,3

5 поколений по 1 из 10

< 65 (каждое следующее поколение дает меньший прирост)

10 поколений по 1 из 1

< 130 (каждое следующее поколение дает меньший прирост)

Суммарный предел (с учетом сложения всех вариантов, оптимизированных с точки зрения когнитивных способностей)

100 + [< 300 (каждое следующее поколение дает меньший прирост)]

В табл. 5 показан ожидаемый рост интеллектуальных способностей в зависимости от размера популяции, в которой производится отбор, исходя из предположения, что доступна вся информация об общем количестве аддитивных генетических вариантов, лежащих в основе наследуемости интеллекта. (Неполная информация снизит эффективность селекции, хотя и не в той степени, как может показаться непосвященным.) Неудивительно, что отбор из большего числа эмбрионов дает лучшие результаты, хотя и не прямо пропорционально: выбор из ста эмбрионов не в пятьдесят раз предпочтительнее выбора из двух.

Интересно, что снижение прироста коэффициента умственного развития значительно меньше, когда результаты отбора отражаются на следующем поколении. Таким образом, гораздо лучший результат получается, если последовательно отбирать 1 из 10 на протяжении десяти поколений (когда каждое следующее поколение состоит из отобранных на предыдущем этапе), чем если один раз выбрать 1 из 100. Естественно, главная проблема последовательного отбора в том, что на него требуется больше времени. Если на каждый этап нужно двадцать–тридцать лет, тогда даже проект из пяти последовательных поколений закончится в середине XXII столетия. Скорее всего, к этому времени человечество достигнет успеха с помощью более прямых и мощных методов генной инженерии (не говоря уже об искусственном интеллекте).

Правда, появилась новая идея, которая сможет значительно увеличить благотворную роль генетического скрининга перед имплантацией, если будет исследована настолько, что будет применена к человеку, — это получение жизнеспособных сперматозоидов и яйцеклеток из стволовых клеток эмбриона. С помощью этого метода уже было получено фертильное потомство мышей и человеческие гаметоподобные клетки. По сути, впереди еще много нерешенных научных проблем, и как минимум предстоит повторить полученные на мышах результаты, но уже на людях, избежав при этом эпигенетических отклонений в полученных линиях стволовых клеток. По мнению исследователя Кацухико Хаяси, решить эти задачи для клеток человека удастся «может быть, лет через десять, а может быть, через пятьдесят».

С гаметами, полученными из стволовых клеток, у любой супружеской пары окажется гораздо больше возможностей для выбора. Сейчас при проведении ЭКО обычно создают меньше десяти эмбрионов. В случае получения гамет из стволовых клеток всего несколько клеток донора могут быть превращены в практически неограниченное число гамет, эмбрионы из которых будут подвергнуты генотипированию и секвенированию, чтобы выбрать наиболее многообещающие для имплантации. В зависимости от стоимости подготовки и скрининга одного эмбриона эта технология способна ощутимо увеличить селективные возможности, оказывающиеся в распоряжении родителей, которые выбрали процедуру ЭКО.

Но гораздо важнее другое: метод получения гамет из стволовых клеток позволит потратить на отбор из нескольких поколений гораздо меньше времени, чем требуется для созревания человека, поскольку предполагает использовать итеративную селекцию эмбрионов. Эта процедура состоит из определенных этапов.

  1. Генотипирование и отбор эмбрионов, обладающих наилучшими необходимыми генетическими характеристиками.
  2. Извлечение из этих эмбрионов стволовых клеток и превращение их в сперматозоид и яйцеклетку, созревающую в течение шести месяцев или даже менее.
  3. Оплодотворение яйцеклетки сперматозоидом и получение новых эмбрионов.
  4. Повторение этого цикла до накопления заметных генетических изменений.

Таким способом можно осуществить отбор из десяти и более поколений всего за несколько лет. (Это долгая и дорогая процедура, однако ее достаточно провести лишь один раз, а не повторять для каждого ребенка. Итоговую совокупность клеток можно будет использовать для получения очень большого количества улучшенных эмбрионов.)

Как видно из табл. 5, средний уровень интеллекта людей, родившихся в результате такого отбора, может быть очень высоким, возможно, равным или даже превосходящим уровень самых гениальных представителей человеческого рода. Мир, значительная часть населения которого состояла бы из людей такого интеллектуального развития, мог бы — при наличии соответствующей культуры, образования, коммуникационной инфраструктуры — представлять собой коллективный сверхразум.

Воздействие селекции эмбрионов на будущее все-таки может быть и ослаблено, и отсрочено. Существует биологически неизбежный временной лаг, связанный с развитием человека: пройдет как минимум двадцать лет, пока отобранные эмбрионы превратятся в людей, достигших производительного возраста; еще больше времени понадобится, чтобы они стали заметной частью своей социальной среды. Более того, даже если технология будет доведена до совершенства, готовность общества принять таких людей может быть очень низкой. В некоторых странах они вообще окажутся вне закона — на основании этических соображений или религиозных традиций. Даже при возможности выбора многие пары все равно предпочтут естественный способ зачатия. Но приятие ЭКО постепенно начнет возрастать, если станут понятны преимущества этой процедуры, и прежде всего основная — фактическая гарантия, что ребенок окажется очень одаренным и лишенным генетической предрасположенности к болезням. В поддержку генетического отбора будут говорить невысокие затраты на медицинские манипуляции и ожидаемые в дальнейшей жизни высокие доходы. По мере того как процедура начнет пользоваться все большей популярностью, особенно среди элитарных слоев общества, может произойти культурный сдвиг в нормах воспитания — в результате выбор в пользу ЭКО станет свидетельством ответственного отношения людей к своим родительским обязанностям. В конечном счете даже скептики поддадутся моде, чтобы их дети не оказались в проигрышном положении по сравнению с «улучшенными» чадами их друзей и коллег. Некоторые страны могут ввести материальное стимулирование с целью побудить своих граждан пользоваться процедурой генетического отбора для повышения качества «человеческого капитала» или укрепления долгосрочной социальной стабильности, используя в качестве критериев отбора такие черты личности, как покорность, готовность подчиняться, смирение, конформизм, несклонность к риску и малодушие, — естественно, культивирование таких популяций будет происходить за пределами правящих кланов.

Усиление интеллектуальных способностей человека будет также зависеть от степени отбора именно когнитивных признаков (см. табл. 6). Тем, кто решит воспользоваться процедурой отбора эмбрионов в той или иной форме, придется решать, как распределить имеющийся в их руках потенциал, поскольку интеллект в некоторой степени вступит в конкуренцию с другими не менее желанными свойствами: здоровьем, красотой, особой индивидуальностью и физической силой. Прийти к разумному компромиссу позволит итеративный характер отбора эмбрионов, с которым связаны значительные селективные возможности и благодаря которому будет осуществляться последовательный строгий отбор на основании нескольких критериев. Однако эта процедура приведет к разрушению прямой генетической связи между родителями и детьми, что может негативно сказаться на востребованности ЭКО во многих цивилизационных культурах.

Таблица 6. Возможное влияние генетического отбора при различных сценариях

Принятие технологии

«ЭКО+». Выбор 1 из 2 эмбрионов (4 балла)

«Агрессивное ЭКО». Выбор 1 из 10 эмбрионов (12 баллов)

«Яйцо из пробирки». Выбор 1 из 100 эмбрионов (19 баллов)

«Итерационный отбор эмбрионов» (100+ баллов)

«В ис­клю­чи­тель­но редком случае»

Принятие — ~0,25%

Социально ничтожно, поскольку результат виден на уровне одного поколения. Неоднозначное общественное мнение берет верх над непредвзятой оценкой прямых последствий

Социально ничтожно, поскольку результат виден на уровне одного поколения. Неоднозначное общественное мнение берет верх над непредвзятой оценкой прямых последствий

«Усо­вер­шенст­во­ван­ные» люди формируют заметное меньшинство на позициях с высокими требованиями к когнитивным способностям

Люди из отобранных эмбрионов занимают доминирующие позиции в среде ученых, адвокатов, врачей, инженеров. Интел­лек­ту­аль­ный ренессанс?

«Пре­иму­щест­вен­но элитарные слои»

Принятие — 10%

Незначительное влияние. Небольшой когнитивный сдвиг в первом поколении в сочетании с отбором по признакам, не имеющим отношения к интеллекту, для формирования ощутимых преимуществ у меньшинства насе­ления

Большая доля «улучшенных» студентов Гарварда. Второе поколение доминирует в профессиях с высокими требованиями к когнитивным способностям

Люди из отобранных эмбрионов занимают доминирующие позиции в среде ученых, адвокатов, врачей, инженеров уже в первом поколении

«Пост­че­ло­ве­чест­во»

«Новая норма­»

Принятие — > 90%

Не­спо­соб­ность к обучению встречается у детей гораздо реже. Во втором поколении количество людей с IQ выше среднего увеличилось в два раза

Значительный рост научных успехов, высокие доходы. Во втором поколении многократное увеличение числа людей с высоким IQ

В первом поколении IQ как у выдающихся ученых встречается в десятки раз чаще. Во втором поколении — в тысячи раз чаще

«Пост­че­ло­ве­чест­во»

С дальнейшим развитием геномных технологий может появиться возможность синтезировать геномы в соответствии с заданной спецификацией, и тогда надобность в больших запасах эмбрионов отпадет. Сегодня еще невозможно синтезировать геном человека целиком и использовать его в репродуктивных целях — не в последнюю очередь из-за пока неразрешенных­ трудностей с правильным течением эпигенетических процессов, — хотя синтез ДНК уже стал обычным направлением биотехнологий и почти полностью автоматизирован. Когда геномная технология достигнет высокого уровня, можно будет конструировать эмбрион с идеально точным соблюдением нужного сочетания генетических исходных данных обоих родителей. Появится возможность также добавить гены, отсутствующие у них, в том числе аллели, достаточно редко встречающиеся в популяции, но способные оказать заметный эффект на когнитивные способности ребенка.

После успешного синтеза человеческого генома одной из доступных операций станет генетическая диагностика эмбриона. (Приблизиться к этому способен также итерационный отбор эмбрионов.) В каждом из нас идут мутации, возможно, сотни мутаций, снижающих эффективность различных клеточных процессов. Эффектом каждой отдельной мутации можно было бы пренебречь (и поэтому она так медленно удаляется из пула генов), но все вместе они могут серьезно влиять на нашу жизнеспособность. Индивидуальные различия в интеллектуальных способностях могут быть в значительной степени следствием разницы в количестве и природе таких лишь слегка опасных аллелей, которые несет каждый из нас. В ходе синтеза гена мы можем взять геном эмбриона и сконструировать такую его версию, которая будет лишена генетического «шума» накопленных мутаций. Наверное, это прозвучит провокационно, но люди, созданные из таких проверенных геномов, могут оказаться более «настоящими», чем все живущие на планете сейчас, поскольку будут представлять собой менее искаженную версию человека. Не все они будут точными копиями друг друга, поскольку люди сильно отличаются генетически, даже если не брать в расчет вредоносные мутации. Но фенотипическим отражением освобожденного от нежелательных мутаций генома может быть исключительное физическое и психическое состояние человека, его превосходство в таких полигенных областях, как интеллект, состояние здоровья, смелость и внешность. В качестве отдаленной аналогии приведу обобщенные портреты людей — так называемые усредненные лица, при составлении которых усредняются дефекты множества наложенных друг на друга лиц (см. рис. 6).

Рис. 6. Обобщенные портреты людей как метафора отредактированного генома. И женское, и мужское усредненное лицо получены путем наложения шестнадцати фотографий разных людей (жители Тель-Авива). Считается, что обобщенный потрет красивее любого из тех конкретных лиц, из которых он составлен, поскольку в нем усредняются характерные для его составляющих отклонения. По аналогии с этим в случае удаления индивидуальных мутаций в результате использования генетически диагностированных, то есть отредактированных, геномов могут появляться люди, близкие к идеалу Платона. При этом они не обязательно должны быть генетически идентичными, поскольку многие гены имеют целый набор в одинаковой мере функциональных аллелей. А проверка устранит лишь отклонения, возникшие в результате вредных мутаций.

Может оказаться востребованным такой метод биотехнологии, как клонирование. Когда-нибудь станет реальностью клонирование человека — почему бы тогда не использовать клоны для воспроизведения генома исключительно талантливых людей? Внедрение такого рода манипуляций окажется ограниченным из-за нежелания большинства потенциальных родителей терять генетическую связь с будущими детьми. Но, в принципе, не стоит пренебрегать этим средством, имеющим свои положительные стороны: во-первых, даже относительно небольшая тенденция к увеличению числа исключительно талантливых людей будет иметь довольно сильное влияние; во-вторых, вполне вероятно, что найдется страна, которая начнет осуществлять широкомасштабную евгеническую программу суррогатного материнства — разумеется, на платной основе. Со временем человек обратится к таким серьезным методам генной инженерии, как создание новых синтетических генов или включение в геном промоторов и других элементов с целью контроля экспрессии генов. Не исключено, что появятся совсем экзотические варианты: большой резервуар, наполненный сложно структурированной искусственно культивированной мозговой тканью; некие «преображенные» трансгенные существа (что-то вроде млекопитающих с крупным­ мозгом, например киты или слоны, но наделенные человеческими генами). Конечно — вымысел в чистом виде, но кто может зарекаться?

До сих пор мы обсуждали вмешательства лишь на уровне зародышевой линии. Теоретически мы можем прийти к нужному результату гораздо быстрее: способом генной модификации соматических клеток — что позволит обойти цикл созревания поколения. С практической точки зрения такой путь намного сложнее, ведь потребуется вводить модифицированные гены в большое количество клеток живого организма, а если нашей целью является улучшение когнитивных функций мозга, то значит придется делать прямые инъекции в мозг. Тогда как при отборе имеющихся в нашем распоряжении половых клеток и эмбрионов генные инъекции не нужны. Даже такие методы генной терапии на уровне зародышевой линии, которые включают необходимость модификации генома (например, коррекция или соединение редких аллелей), гораздо легче задействовать на эмбриональной стадии, когда имеешь дело с небольшим количеством клеток. Кроме того, вмешательство на уровне эмбриона, возможно, приведет к лучшим результатам, поскольку влияние на мозг происходит на ранней стадии его формирования, в то время как при соматическом воздействии на взрослых особей придется ограничиться лишь корректировкой существующей структуры. (В некоторых случаях соматическая генная терапия вполне заменима медикаментозным лечением.)

Исходя из сказанного выше, нужно помнить, что при выборе такого метода, как вмешательство на уровне зародышевой линии, всегда следует учитывать временной фактор: годы, необходимые для взросления, неизбежно отодвигают значимость воздействия прихода в мир новой генерации. Даже имей мы уже сегодня в своем распоряжении самую совершенную технологию, отвечающую требованиям исследователей, все равно потребовалось бы больше двух десятилетий, чтобы генетически модифицированное потомство достигло зрелости. Помимо всего, когда речь идет о новых методах, которые опробуют на людях, то между экспериментальной проверкой концепции в лабораторных условиях и началом применения метода в медицинской практике обычно проходит лет десять, в течение которых проводятся бесконечные исследования для подтверждения безопасности и масштабные клинические испытания. При простейших формах генетической селекции подобные проверки, скорее всего, не потребуются, поскольку используются стандартные методы лечения бесплодия и генетическая информация для сознательного отбора эмбрионов, которые иначе были бы выбраны случайно.

Очевидно, в основе отсрочек могут лежать и внутренние обстоятельства, связанные не столько с боязнью ошибиться и навредить (вот откуда требования многочисленных проверок на безопасность), сколько со страхом перед успехом — страхом, вызванным опасением по поводу этической допустимости генетической селекции и ее широких социальных последствий (вот откуда потребность в разработке мер регулирования). В каждой развитой стране — в силу ее культурных, исторических и религиозных особенностей — это беспокойство выражается по-своему. После Второй мировой войны в Германии предпочитают избегать любых репродуктивных методов, хотя бы в отдаленной степени напоминающих попытку улучшения человеческой природы, — позиция более чем понятная, если учитывать мрачную историю преступлений, совершенных нацистами во имя евгеники. В остальных западных странах, вероятно, будут смотреть на вещи шире. Некоторые государства — скорее всего, Китай или Сингапур, где уже действует долгосрочная демографическая политика, — ради повышения интеллектуального уровня своего населения могут не только разрешить, но и активно продвигать использование генетической селекции и генной инженерии, когда развитие технологий сделает это возможным.

Как только будет создан прецедент и станут видны реальные результаты, сразу у всех, кто хотел, но откладывал решение проблемы, появится мощный стимул последовать примеру первопроходцев. Страны, предпочитающие держаться в стороне, обязательно столкнутся с перспективой навсегда застрять в интеллектуальном болоте, утратить экономические, научные и военные позиции и навсегда уступить свое влияние в мире государствам, не побоявшимся новых технологий совершенствования человеческих возможностей. Население начнет задумываться, почему в престижных учебных заведениях учатся только генетически отобранные дети (которые в среднем будут еще отличаться и внешней привлекательностью, и здоровьем, и усидчивостью); естественно, граждане пожелают, чтобы их будущие отпрыски тоже могли пользоваться такими же преимуществами. Есть вероятность, что после того как заработает генная инженерия и будут подтверждены ее первые результаты, в течение сравнительно короткого времени — может быть, десятилетия — произойдет серьезный поведенческий сдвиг. Проведенные в США опросы показывают значительные изменения в общественном мнении по отношению к процедуре ЭКО с момента появления в 1978 году Луизы Браун — первого «младенца из пробирки». За несколько лет до этого всего 18 процентов американцев согласились бы сделать ЭКО в случае бесплодия; вскоре после рождения Луизы Браун согласных насчитывалось уже 53 процента, и их число продолжает расти. (Для сравнения: в проведенном в 2004 году опросе 28 процентов американцев одобрили селекцию эмбрионов по критерию «сила и интеллект», 58 процентов — по критерию «избежать риска развития рака во взрослом возрасте», 68 процентов — по критерию «избежать риска неизлечимых детских болезней».)

Давайте еще раз перечислим случаи, вызывающие отсрочку результатов: сбор информации, необходимой для успешной селекции из набора эмбрионов, полученных в результате процедуры ЭКО, — от пяти до десяти лет (возможно, потребуется значительно больше времени, чтобы гаметы из стволовых клеток стали доступны для использования в процессе репродукции человека); формирование социально значимого спроса и внедрение самой услуги — десять лет; время, которое потребуется «улучшенному» поколению, чтобы достичь производительного возраста, — от двадцати до двадцати пяти лет. Суммируя все сроки, мы увидим, что технологии по улучшению человеческих свойств на уровне зародышевой линии вряд ли начнут оказывать существенное влияние на социальную среду в первой половине текущего столетия. Однако вследствие применения генетических методов уже с середины столетия в довольно большом сегменте общества будет отмечен показательный подъем интеллектуальных способностей взрослого населения. После того как в ряды трудоспособного населения вольются когорты людей, чье зачатие было осуществлено по ультрасовременным высоким генетическим технологиям — как, например, применение эмбриональных стволовых клеток и итеративной селекции эмбрионов, — темпы интеллектуального роста намного повысятся.

Когда описанные выше генетические технологии достигнут своего полного развития (оставим пока за скобками экзотические варианты вроде интеллекта в искусственно культивированной ткани мозга), мир убедится, что представители новых поколений в среднем окажутся несравненно умнее людей из прошлого — даже обладателей наивысших коэффициентов интеллекта. Потенциал биологического совершенствования в перспективе так высок, что, возможно, его вполне хватит для появления человека сверхразумного — по крайней мере в его начальной стадии. В этом нет ничего удивительного. В конечном счете именно так возник человек разумный: когда у определенного вида человекообразных резко повысились, по сравнению с прародителями-гоминидами, интеллектуальные способности — причем их развитие произошло в результате такого слепого и неконтролируемого метода, как эволюционный процесс. Поэтому нет оснований предполагать, будто Homo sapiens, дойдя якобы до вершины разумной деятельности, является максимальным достижением биологической системы. Мы далеки от того, чтобы представлять собой самый умный биологический вид, возможно, задуманный природой. Вероятно, нас лучше рассматривать как самый глупый биологический вид из умников, возможно, задуманных природой, но вид, способный создать и привести в действие технологическую цивилизацию — ту нишу, которую мы заняли вовсе не из-за своей, как принято считать, оптимальной адаптивности, а лишь потому, что добрались до нее первыми.

Прогресс на пути биологического развития вполне реален. Но из-за неизбежной отсрочки на время взросления целого поколения он не получится столь же внезапным, как в сценариях с созданием искусственного интеллекта. (Временной фактор вряд ли будет играть столь существенную роль как в случае применения генной терапии соматических клеток, так и при медикаментозном подходе, но эти методы с меньшей вероятностью способны вызвать заметные изменения.) Максимальный потенциал искусственного интеллекта, безусловно, намного выше природного интеллекта, присущего человеку. (Величину разрыва можно оценить, сравнив разницу в быстродействии между электронными компонентами и нервными клетками: сегодняшние транзисторы работают в десять миллионов раз быстрее, чем биологические нейроны.) Однако даже сравнительно незначительные улучшения биологического интеллекта могли бы иметь серьезные последствия. В частности, это форсировало бы научно-технологическое развитие, что, в свою очередь, способствовало бы успехам на пути освоения более действенных методов как совершенствования биологических умственных способностей, так и разработки искусственного интеллекта. Задумайтесь, какими темпами мы продвигались бы к созданию искусственного разума, если бы мир населяли миллионы людей, превосходящих по своему интеллектуальному уровню любых выдающихся мыслителей прошлого, а самый заурядный парень на земле ни в чем бы не уступал Алану Тьюрингу вместе с Джоном фон Нейманом.

На какое-то время отойдем от обсуждения стратегических последствий развития когнитивных способностей и постараемся подвести итоги сказанному, отметив три важных момента:

1)-при помощи биотехнологических методов мы способны прийти к существованию сверхразума, по крайней мере к его начальной стадии;

2)-появление усовершенствованных интеллектуально людей увеличивает возможность осуществить когда-нибудь развитие искусственного интеллекта до высокоразвитых форм, поскольку сама задача создания ИИ будет абсолютно доступна и проста для усовершенствованных людей нового поколения — при условии, конечно, что мы окажемся принципиально неспособными справиться с нею собственными силами (хотя предполагать подобное пока нет никаких причин);

3)-мы рассматривали сценарии, обещающие завершиться не ранее чем во второй половине нынешнего столетия, а может быть, и позже; однако, уносясь мыслью в такую даль, нам следует учитывать, что вполне допустимо появление поколения генетически усовершенствованных групп людей: избирателей, изобретателей, ученых, причем показатели улучшения их когнитивных функций будут увеличиваться от десятилетия к десятилетию.

Нейрокомпьютерный интерфейс

Периодически выдвигаются предложения использовать прямой нейрокомпьютерный интерфейс, в частности, имплантаты, что позволит человеку использовать всю мощь электронных вычислений: идеальное хранение информации, быстрые и точные арифметические расчеты, широкополосную передачу данных — в результате такая гибридная система будет принципиально превосходить по всем характеристикам деятельность головного мозга. Возможность прямого подключения компьютера к биологическому мозгу была не раз доказана, но, несмотря на это, кажется маловероятным, что прямые нейронные интерфейсы получат в обозримом будущем широкое распространение.

Прежде всего заметим, что в результате имплантации электрода в мозг возникает значительный риск медицинских осложнений — инфекции, смещение электрода, кровоизлияния, ухудшение умственных способностей. На сегодняшний день лечение пациентов с болезнью Паркинсона является едва ли не самой яркой демонстрацией той пользы, которую приносит стимуляция мозга. В этом случае используется довольно простой имплантат, на самом деле не соединенный непосредственно с мозгом, а всего лишь создающий электрический разряд, воздействующий на субталамическое ядро, или ядро Льюиса. На демонстрационном видеоролике показан сидящий в кресле полностью обездвиженный болезнью человек, который после подключения электрода мгновенно возвращается к жизни: он начинает двигать руками, встает и идет по комнате, поворачивается на месте и даже делает пируэт. Но у этой совершенно простой и на удивление успешной процедуры тоже есть негативные стороны. В одном исследовании у экспериментальных пациентов с болезнью Паркинсона, по сравнению с контрольной группой, при имплантации электрода в мозг отмечены ухудшения следующих функций: беглой речи, избирательного внимания, цветовой и словесной памяти. Испытуемые пациенты часто жаловались на снижение умственных способностей. Если речь идет о людях с тяжелыми заболеваниями, то можно мириться и с рисками, и с побочными эффектами. Совсем другой вопрос — здоровые граждане, соглашающиеся на нейрохирургические манипуляции. В таких случаях любое вмешательство должно приводить к существенному улучшению функций головного мозга.

Пожалуй, такое усовершенствование когнитивных способностей обернется более сложным делом, чем генная терапия, — это тоже дает право сомневаться, что путь киборгизации приведет нас к сверхразуму. Пациенты, страдающие параличом, могут получить пользу от имплантата, который заменит их пораженные нервы или активирует спинномозговые центры, отвечающие за двигательную функцию. Пациенты, испытывающие проблемы со зрением или слухом, безусловно, выигрывают от имплантации искусственной улитки или сетчатки глаза. Пациенты с болезнью Паркинсона или хронической мышечной болью, без сомнения, испытывают облегчение от глубокой стимуляции мозга, возбуждающей или подавляющей активность в отдельных его областях. Гораздо более трудная задача — обес­печить непосредственное широкополосное взаимодействие между мозгом и компьютером для заметного повышения интеллектуальных способностей, которого невозможно добиться иными, более доступными средствами. Большинство потенциальных преимуществ, которые появятся в распоряжении здоровых людей в результате имплантации электродов, возможно получить с меньшим риском, затратами и неудобствами, просто используя обычные органы движения и чувств при взаимодействии с компьютерами, находящимися вне пределов нашего тела. Чтобы выйти в интернет, нам не нужно подключать к себе оптоволоконный кабель. Человек не только наделен сетчаткой глаза, способной передавать данные с впечатляющей скоростью около десяти миллионов бит в секунду, но и обладает «предустановленным программным обеспечением» в виде зрительной коры головного мозга, которая отлично приспособлена для извлечения значения из этих массивов информации и взаимодействия с другими областями мозга для ее дальнейшей обработки. Даже если появился бы относительно простой способ закачивать в наш мозг больше информации, эти дополнительные данные ненамного повысили бы скорость, с которой мы думаем и учимся, если только «апгрейду» не подвергнется весь нейронный механизм их обработки. А поскольку он включает в себя практически весь мозг, в действительности потребовалось бы «протезирование» мозга целиком — иначе говоря, создание универсального искусственного интеллекта. Впрочем, существуй искусственный интеллект человеческого уровня — зачем тогда понадобилась бы нейрохирургия? Ведь компьютер может быть помещен не только в костяную коробку, но и в металлический корпус. Таким образом, если мы вновь обращаемся к искусственному интеллекту, то непременно свернем на путь, уже рассмотренный нами ранее.

Ученые предлагают использовать нейрокомпьютерный интерфейс для считывания информации из головного мозга человека для коммуникации его с другими людьми или компьютерами. Система, позволяющая передвигать курсор на экране с помощью мысли, помогла бы пациентам с синдромом «запертого человека» устанавливать связь с внешним миром. Ширина полосы передачи данных в таких экспериментах пока очень мала: пациент мучительно долго набирает букву за буквой со скоростью несколько слов в минуту. Можно легко представить усовершенствованную версию, по всей вероятности, с имплантами следующего поколения, которые — для трансляции внутренней речи — будут вживлять в центр Брока (участок коры головного мозга, находящийся в задненижней части третьей лобной извилины, отвечающий за моторную, фонологическую и синтаксическую организацию речи). Сегодня системы обратной связи интересны скорее с точки зрения оказания помощи пациентам с мышечной атрофией и людям, перенесшим инсульт. Эта новейшая технология пока мало применима к здоровому человеку, хотя, по сути, повторяет тот же набор функций, который обеспечивается простым наличием микрофона и программой распознавания речи, то есть продуктом, уже присутствующим на нашем рынке и отличающимся в лучшую сторону такими своими характеристиками, как неболезненное и удобное применение, дешевизна и отсутствие риска, связанного с нейрохирургическим вмешательством (а также не порождающим фантазий в духе Оруэлла на тему подслушивающего устройства внутри черепной коробки). Кроме того, когда наше тело и компьютер никак не связаны физически, то последний удобнее ремонтировать и оснащать новым ПО.

Но как быть с неизбывной человеческой мечтой, чтобы люди вступали в общение не на вербальном уровне, а напрямую — через мозговую деятельность, как бы «загружая» друг в друга свои образы, мысли, знания и даже опыт? Мы загружаем в компьютеры огромные файлы, в том числе библиотеки с миллионами книг и статей, буквально за считаные секунды или минуты — неужели нам никогда не придется поступать так же, имея дело с собственным мозгом и собственной информацией? Кажущаяся легкость реализации этой идеи, вероятно, базируется на ошибочном представлении о том, как человеческий мозг воспринимает и хранит информацию. Как уже отмечалось, развитие человеческого интеллекта ограничивает не скорость, с которой данные поступают в память, а насколько быстро мозг способен извлекать из них смысловые значения и осознавать их. Возможно, предполагается передавать непосредственно смысл, не оформляя его в сенсорную информацию, которую придется декодировать получателю. Тут возникает две проблемы. Первая заключается в том, что мозг, в отличие от программ, которые мы привычно используем на компьютерах, не использует стандартные форматы хранения и представления данных. Скорее, в каждом мозгу имеются свои уникальные способы представления содержания более высокого уровня. То, какие именно сочетания нейронов используются для передачи той или иной концепции, зависит от уникального опыта конкретного мозга (а также различных генетических факторов и стохастических физиологических­ процессов). Как в случае искусственных нейронных сетей, так и в биологических нейронных сетях смысловое значение скорее представлено всей структурой и моделями деятельности значительных перекрывающихся регионов, а не отдельными ячейками памяти, уложенными в аккуратные массивы. Поэтому невозможно установить простое соответствие между нейронами двух людей так, чтобы мысли автоматически перетекали от одного к другому. Если нужно передать мысли из одного мозга в другой так, чтобы они были ему понятны, их нужно подвергнуть декомпозиции и перевести в символы в соответствии с некоторой общепринятой системой, которая позволит их правильно интерпретировать мозгом-прием­ником. Это уже лингвистическая задача.

Теоретически мы в состоянии представить интерфейс, на который было бы можно переложить когнитивную работу по артикуляции и интерпретации мыслей. Он будет должен уметь каким-то образом считывать состояния нейронов в мозге-передатчике и переводить их в понятные модели активации нейронов в мозге-приемнике. Даже если оставить в стороне (очевидные) технические трудности организации надежного одновременного считывания состояния миллиардов отдельных нейронов и записи в них, создание такого интерфейса, вероятно, само по себе является AI-полной задачей искусственного интеллекта. Интерфейс должен включать компонент, способный (в режиме реального времени) ставить в соответствие возникающим в одном мозгу моделям семантически эквивалентные модели в другом мозгу. Для выполнения этой задачи потребуется подробное многоуровневое понимание механизма нейронных вычислений, которое может привести непосредственно к созданию нейроморфного ИИ.

Несмотря на эти оговорки, движение в сторону улучшения интеллектуальных способностей по пути создания киберорганизмов не кажется совершенно бесперспективным. Впечатляющие результаты работ с гиппокампом крыс показали возможность создания нейронного протеза, который может повысить эффективность выполнения простой задачи на запоминание. На сегодняшний день имплантат считывает информацию с электродов в количестве от одного десятка до двух десятков, размещенных в области CA3 гиппокампа, и передает ее на такое же количество нейронов, расположенных в области CA1 гиппокампа. Микропроцессор способен различать две модели возбуждения в первой области (соответствующие двум видам информации — «правый рычаг» и «левый рычаг») и научиться тому, как эти модели передаются во вторую­ область. Такие протезы могут не только восстановить функционирование мозга в ситуации, когда нормальное нейронное взаимодействие между двумя областями нейронов нарушено, но и за счет направленной активации требуемой модели во второй области способны повысить эффективность выполнения задачи по сравнению с обычным для крыс уровнем. Хотя по современным стандартам это и весьма впечатляющее в техническом плане достижение, эксперимент оставляет без ответа множество вопросов. Насколько хорошо этот подход масштабируется? Ведь число комбинаций взаимодействующих областей мозга, а также нейронов на входе и выходе из них, очень велико, поэтому сможем ли мы избежать комбинаторного взрыва при попытке картировать взаимодействия в мозгу? Не получится ли, что хотя эффективность решения тестовой задачи растет, этому сопутствуют некие скрытые издержки, например снижение способности обобщать стимулы или неспособность забыть определенную ассоциацию, после того как среда изменилась? Получит ли человек — располагающий, в отличие от крыс, внешними носителями памяти вроде бумаги и ручки — какую-либо выгоду от появления таких возможностей? Насколько легко будет применить подобный метод к другим областям мозга? В то время как работе описанного протеза помогает сравнительно простая структура областей гиппокампа, обеспечивающая последовательную передачу сигнала в одну сторону (по сути, однонаправленная связь между зонами СА3 и СА1), другие структуры в коре головного мозга используют рекуррентные циклы обратной связи, что значительно повышает сложность схемы связей и, видимо, затруднит расшифровку набора функций встроенных в нее групп нейронов.

В плане развития киборгов есть надежда, что мозг, снабженный имплантатом, поддерживающим связь с внешней средой, со временем научится сопоставлять свое внутреннее состояние и получаемые внешние сигналы. В этом случае имплантату не обязательно обладать интеллектом, скорее, мозг должен будет интеллектуально настроиться на интерфейс, примерно как мозг ребенка постепенно обучается интерпретировать сигналы, поступающие из внешнего мира через рецепторы органов зрения и слуха. И снова возникает естественный вопрос: принесет ли это какую-нибудь реальную пользу? Предположим, пластичность мозга окажется настолько достаточной, что он научится распознавать модели в рамках некоего нового потока входных сигналов, проецируемых на его кору посредством некоего нейрокомпьютерного интерфейса, — но почему тогда просто не спроецировать ту же самую информацию непосредственно на сетчатку глаза в виде зрительных образов или на улитку в виде звука? Применение низкотехнологичных методов поможет избежать множества проблем — хотя и в том и в другом случаях нашему мозгу, чтобы научиться понимать информацию, придется задействовать механизмы распознавания образов и присущее ему свойство пластичности.

Сети и организации

Еще один потенциальный путь, ведущий к сверхразуму, — постепенное совершенствование сетей и организаций, соединяющих умы людей друг с другом и с различными искусственными объектами и ботами, то есть программами, автоматически выполняющими действия вместо человека. Смысл не в том, чтобы усовершенствовать когнитивные способности отдельных людей и в итоге вывести популяцию сверинтеллектуалов. Идея заключается в другом: создать некое объединение индивидуумов, организованных таким образом, чтобы эта появившаяся сеть по своему развитию могла бы достигнуть сверхинтеллектуального уровня — сеть, которую в следующей главе мы назовем «коллективный сверхразум».

В доисторические и исторические времена коллективный интеллект помог человечеству добиться многого. Источники успеха были самые разные: нововведения в средствах связи — причем сюда надо включить изобретение письменности и печатного дела, не говоря уже о возникновении самих языков; рост населения и увеличение его плотности; усовершенствование форм институциональной организации и стандартов познания; постепенное накопление институционального капитала. Фактически система коллективного интеллекта ограничена возможностями интеллекта ее членов, затратами на передачу информации между ними и различными недостатками и неэффективностью, присущими любым человеческим сообществам. По мере снижения расходов на все виды связи (имеется в виду не только стоимость оборудования, но и время ожидания ответа, затраты времени и внимания, а также другие факторы) появляется возможность создавать более крупные и более сплоченные организации. То же самое происходит и в случае успешной борьбы с отдельных ведомственными крайностями, деформирующими любую организационную жизнь, — разорительные имиджевые игры и статусные притязания; распыление ресурсов; несоблюдение сроков выполнения заданий; сокрытие фактов; фальсификация информации и прочие проблемы, связанные с выбором между свободой воли и навязанными условиями. Даже частичная ликвидация перекосов приносит коллективному интеллекту внушительную пользу.

Существует множество технологических и институциональных новаторских идей, способных влиять на рост нашего коллективного интеллекта. Например, современные рынки прогнозов относительно политики распределения дотаций благоприятствуют утверждению норм справедливости и способствуют выработке перспективных оценок по спорным научным и социальным вопросам. Детекторы лжи (если удастся наладить выпуск надежных и удобных в применении полиграфов) смогут понизить уровень мошенничества в деятельности людей. Более мощным инструментом могут стать детекторы самообмана. Но и без новоиспеченных игр разума некоторые формы обмана перестают быть актуальными, утрачивая свою привлекательность из-за ряда причин, таких как: доступность информации, рассказывающей о репутации и прошлом человека; промульгация строгих гносеологических правил; приоритет здравого смысла в культуре организаций. В результате систем наблюдения, осуществляемых на добровольной или обязательной основе, будут накоплены огромные объемы информации о поведении человека. На сайтах социальных сетей делятся своей личной информацией уже больше миллиарда людей; совсем скоро все пользователи — с помощью микрофонов и видеокамер, встроенных в смартфоны или оправы очков, — получат возможность загружать непрерывную трансляцию своей жизни. Автоматизированный анализ этих потоков данных породит множество новых применений — разумеется, как во благо, так и во зло.

Рост уровня коллективного интеллекта может быть также связан с общими организационными и экономическими изменениями и с увеличением среди народонаселения доли больших сообществ социальных сетей, состоящих из образованных людей, постоянно обменивающихся информацией и интегрированных в общемировую культуру.

Интернет остается самым динамичным полем действия, передним краем для инноваций и экспериментов. Причем большая часть его потенциала до сих пор еще не раскрыта. Следует укреплять интеллектуальные сети, активно поддерживать формат разумных обсуждений, стараться избегать предубеждений, вырабатывать механизмы для превращения частных суждений в коллективные решения — все это должно внести существенный вклад в развитие коллективного интеллекта как всего человечества в целом, так и отдельных сообществ.

Настало время поговорить о совершенно, казалось бы, фантастической идее, что интернет может в один прекрасный день «проснуться». Может ли он стать чем-то большим, нежели просто местом сосредоточения пока еще слабо выраженного коллективного сверхразумного начала — чем-то вроде виртуальной черепной коробки, вместившей в себя зародыш единого сверхразума? (В знаменитом эссе Вернона Винджа «Далее — технологическая сингулярность», написанном в 1993 году, этот сценарий рассматривается в качестве одного из путей появления сверхразума, писатель даже ввел в оборот термин «технологическая сингулярность».) Можно возразить, что искусственный интеллект трудно создать даже в результате целенаправленных инженерных усилий, поэтому его спонтанное появление кажется практически невероятным. Однако дело не обстоит так, будто одна из следующих версий интернета внезапно станет сверхразумной исключительно по воле случая. Более правдоподобный сценарий заключается в другом: интернет будет шаг за шагом совершенствоваться, аккумулируя в себе все самое передовое, благодаря усилиям множества людей на протяжении долгих лет — усилиям, направленным на улучшение алгоритмов поиска, отбора и анализа информации, на создание более мощных форматов представления данных, более качественных автономных ПО и более эффективных протоколов, управляющих взаимодействием этих ботов. В конечном счете мириады небольших сдвигов создадут основу для некой единой формы сетевого интеллекта. По крайней мере, вполне возможно, что появится именно такая когнитивная система, выращенная на веб-технологиях, не испытывающая недостатка в вычислительной мощности и других ресурсах, необходимых для взрывного роста, — разве что за исключением одного критически важного ингредиента. И когда этот ингредиент будет найден и брошен в общий котел — все раньше сваренное воспламенится и превратится в сверхразум. Однако этот сценарий опять сворачивает на уже знакомый нам путь появления сверхразума — создание универсального искусственного интеллекта.

Резюме

Итак, к сверхразуму ведут самые разные пути, и этот непреложный факт вселяет некоторую уверенность, что в конечном счете мы до него доберемся. Не удастся пройти одним путем — мы выберем другой.

Однако разнообразные варианты не приведут нас во многие места назначения. Даже если на одной из дорог, не связанной с машинным интеллектом, произойдет заметное улучшение когнитивных способностей — это не означает, что ИИ утратил свое значение. Скорее, наоборот: развившийся сверх меры человеческий и организационный разум ускорит развитие науки и технологий, потенциально приблизив появление радикальных форм создания универсального искусственного интеллекта вроде полной эмуляции головного мозга.

Из всего вышесказанного не следует делать вывод, будто нам все равно, каким маршрутом двигаться к сверхразуму. Выбранный путь может оказать серьезное влияние на конечный результат. Даже если новые полученные возможности не слишком обусловлены вариантом направления, то вопрос, как они станут использоваться и какова будет степень нашего контроля над ними, вполне может зависеть от принятого подхода. Например, усовершенствование человеческого или организационного разума может повысить готовность людей идти на риск и добиваться осуществления такого машинного сверхразума, который будет безопасным и полезным для человечества. (Чтобы дойти до полноценной стратегической оценки этого, придется преодолеть много трудностей — их обсуждением мы займемся лишь в четырнадцатой главе.)

Можно ожидать, что первый настоящий сверхразум (в отличие от незначительного повышения нынешнего уровня когнитивных способностей) появится в результате движения к искусственному интеллекту. Однако этот путь связан с большой неопределенностью. Поэтому трудно точно оценить, насколько он окажется долгим и со сколькими препятствиями мы столкнемся. Некоторыми шансами оказаться самым быстрым способом осуществления сверхразума обладает полная эмуляция головного мозга. Поскольку прогресс на этом пути требует скорее технологических решений, чем теоретических прорывов, есть основания полагать, что в конечном счете успех достижим. И все-таки с большой долей уверенности мы утверждаем, что даже в случае постоянного прогресса в компьютерном моделировании мозга финишную черту первым пересечет искусственный интеллект: причина заключается в том, что нейроморфный искусственный интеллект может быть создан и с помощью частичной эмуляции мозга.

Явно решаема задача биологического улучшения интеллектуальных способностей, особенно основанного на генетической селекции. Многообещающей технологией на сегодняшний день кажется итеративная селекция эмбрионов. Однако в сравнении с возможными прорывами в искусственном интеллекте биологические улучшения будут происходить относительно медленно и постепенно. В лучшем случае они приведут к возникновению сравнительно слабой формы сверхразума (скоро мы снова вернемся к этой теме).

Благодаря реальной возможности биологического улучшения интеллектуальных способностей растет наша уверенность, что в конце концов будет создан и искусственный интеллект, поскольку улучшенные интеллектуально люди — ученые и инженеры — смогут добиться большего и быстрейшего прогресса, нежели их обычные коллеги. Особенно в тех сценариях, где ИИ должен быть создан не раньше середины нашего столетия, огромная роль отводится постепенно растущей когорте усовершенствованных интеллектуально людей.

Нейрокомпьютерные интерфейсы вряд ли станут тем вариантом, который приведет нас к сверхразуму. Усовершенствование сетей и организаций может в долгосрочной перспективе привести к появлению слабых форм коллективного интеллекта, но более вероятно, что оно сыграет стимулирующую роль, как и биологическое улучшение интеллектуальных способностей, постепенно повышая эффективность умственной деятельности людей при решении интеллектуальных задач. В сравнении с биологическими улучшениями прогресс в развитии сетей и организаций произойдет быстрее — на самом деле он уже происходит и уже оказывает на нашу жизнь значительное влияние. Однако усовершенствование сетей и организаций будет иметь меньшее влияние на развитие человеческих возможностей решать интеллектуальные задачи, чем усовершенствование когнитивных способностей. Сети и организации скорее послужат стимулирующим началом развития коллективного интеллекта, нежели качественного интеллекта — разницу между этими понятиями мы рассмотрим в следующей главе.

Назад: Глава вторая. Путь к сверхразуму
Дальше: Глава третья. Типы сверхразума

VICTOR
Книга достойна прочтения , т.к. позволяет оценить своё ( человеческое ) существование и предназначение в информационно-цифровом пространстве .