Глава 3
Специальная теория относительности и «год чудес»
Заинтригованный критикой Маха теории Ньютона, Эйнштейн вернулся к образу, который преследовал его с 16 лет, – к полету рядом со световым лучом. Он вспомнил забавный, но важный факт, который открыл для себя во время учебы в Политехникуме: в теории Максвелла скорость света оставалась неизменной и не зависела от того, как ее измеряли. Много лет он ломал голову над тем, как такое вообще может быть, поскольку в ньютоновом «мире здравого смысла» любой движущийся объект можно догнать.
Опять представьте себе полицейского в погоне за автомобилем-нарушителем. Полицейский знает, что если поедет достаточно быстро, то сможет его догнать. Всякий, кого хоть раз штрафовали за превышение скорости, это знает. Но, если мы заменим несущийся автомобиль световым лучом и поместим рядом наблюдателя, который будет видеть всю картину со стороны, тот увидит, что полицейский едет чуть позади светового луча и движется почти так же быстро, как свет. Мы уверены: полицейский знает, что едет практически вровень со световым лучом. Однако позже, встретившись с ним, мы слышим странный рассказ. Он утверждает, что не двигался почти рядом с лучом, как мы только что видели; световой луч, по его словам, унесся прочь и оставил его глотать пыль. Полицейский рассказывает, что, как бы он ни газовал и какую бы мощность ни выжимал из своего движка, луч удалялся от него и уносился прочь со все той же, совершенно одинаковой скоростью. Мало того, он клянется, что не мог даже чуть-чуть приблизиться к световому лучу. Как бы быстро он ни двигался, световой луч все равно уходил от него со скоростью света, как будто сам он стоял на месте, а не несся в полицейском автомобиле на громадной скорости.
Вы начинаете убеждать его в том, что видели, как он летел почти вровень со световым лучом и лишь чуть-чуть его не догнал; он говорит, что вы сошли с ума: ему не удалось даже приблизиться. Для Эйнштейна именно этот момент представлял главную, мучительную загадку: как так может быть, чтобы два человека видели одно и то же событие настолько по-разному? Если скорость света и правда представляет собой природную константу, то как может наблюдатель утверждать, что полицейский шел почти вровень с лучом света, а сам полицейский – клясться, что не сумел даже приблизиться к нему?
Эйнштейн давно понял, что картина по Ньютону (где скорости можно складывать и вычитать) и картина по Максвеллу (где скорость света постоянна) полностью противоречат одна другой. Теория Ньютона – самодостаточная система, основанная на нескольких допущениях. Если хотя бы одно из этих допущений нарушается, вся теория расползается, как может распуститься свитер от одной упущенной нити. Фантазии Эйнштейна о полете вместе с лучом света суждено было стать для ньютоновой теории именно такой упущенной нитью.
Однажды в мае 1905 г. Эйнштейн отправился к своему доброму другу Микеле Бессо, который тоже работал в патентном бюро, и изложил ему в общих чертах вопрос, мучивший его чуть ли не десять лет. Используя Бессо как любимого собеседника для проверки своих идей, Эйнштейн изложил суть дела: механика Ньютона и уравнения Максвелла – два столпа физики – несовместимы между собой. Неверно либо одно, либо другое. Какая бы теория ни оказалась верной, для окончательного разрешения вопроса потребуется полная реорганизация всей физики. Эйнштейн вновь и вновь разбирал парадокс погони за световым лучом. Позже он вспоминал: «В этом парадоксе уже присутствовал зародыш специальной теории относительности». Друзья проговорили несколько часов, подробно обсуждая каждый аспект проблемы, включая и ньютонову концепцию абсолютного пространства и времени, которая на первый взгляд противоречила неизменности скорости света по Максвеллу. В конце концов Эйнштейн, совершенно измотанный, объявил, что признает свое поражение и сдается и что больше не будет размышлять над этим вопросом. Все бесполезно; у него ничего не получилось.
Эйнштейн, конечно, был подавлен, но, когда он в тот вечер возвращался домой, мысли его по-прежнему вращались вокруг все того же вопроса. В частности, он запомнил, как ехал в автобусе по Берну и смотрел на знаменитую башню с часами, возвышающуюся над городом. Он представил себе, что произойдет, если вдруг автобус разгонится до скорости света и начнет уноситься прочь от башни. Тут он понял, что часы на башне показались бы ему остановившимися, поскольку свет от них не смог бы догнать автобус, но что его собственные часы в автобусе шли бы совершенно нормально.
Его внезапно осенило, появился ключ к решению всего парадокса. «В голове разразилась настоящая буря», – вспоминал Эйнштейн. Ответ оказался простым и элегантным: время в разных точках Вселенной может идти с разной скоростью в зависимости от того, как быстро вы движетесь. Представьте себе множество часов, разбросанных по всей Вселенной, причем каждые часы показывают свое время и идут с собственной скоростью. Секунда на Земле отличается по длительности от секунды на Луне или на Юпитере. Более того, чем быстрее вы движетесь, тем сильнее замедляется время. (Эйнштейн однажды пошутил, что, размышляя над теорией относительности, он поместил отдельные часы в разные точки Вселенной и все они шли с разной скоростью, а в реальной жизни у него не было денег даже на одни часы.) Это означало, что события, происходящие в одной системе отсчета, не обязательно происходили одновременно и в другой, как считал Ньютон. Наконец-то он сумел проникнуть «в мысли Бога». Позже он вспоминал с неизменным возбуждением: «Решение пришло ко мне внезапно с мыслью о том, что наши концепции и законы пространства и времени могут претендовать на верность в той мере, в какой они состоят в ясных отношениях с нашим опытом… Пересмотрев концепцию одновременности и преобразовав ее в более гибкую форму, я добрался таким образом до теории относительности».
Вспомните, как в парадоксе с полицией и нарушителем полицейский для внешнего наблюдателя двигался вплотную за удирающим световым лучом, тогда как преследователь утверждал, что, как бы он ни разгонялся, луч уносился от него в точности со скоростью света. Единственный способ примирить эти две картины – заставить мозг полицейского замедлить работу. Время для полицейского замедляется. Если бы мы с обочины могли видеть, что показывают часы на руке полицейского, то увидели бы, что они почти остановились и что лицо его тоже застыло во времени. Таким образом, с нашей точки зрения было бы видно, что он несется «голова к голове» с лучом света, но его часы (и его мозг) почти остановились. Позже, поговорив с полицейским, мы выяснили, что, с его точки зрения, луч света стремительно уносился прочь только потому, что его мозг и часы работали во время погони намного медленнее.
Для завершения своей теории Эйнштейн включил в нее и сокращение Лоренца – Фицджеральда, но сжимались при этом само пространство, а не атомы, как думали Лоренц и Фицджеральд. (Суммарный эффект сжатия пространства и растяжения времени в настоящее время называется «преобразованием Лоренца».) Таким образом ему удалось окончательно разделаться с эфирной теорией. Подводя итоги своего пути к теории относительности, Эйнштейн напишет: «Максвеллу я обязан больше, чем кому-либо другому». Хотя Эйнштейн, вероятно, слышал что-то об эксперименте Майкельсона – Морли, озарение по поводу теории относительности пришло не со стороны эфирного ветра, а непосредственно от уравнений Максвелла.
На следующий день после откровения Эйнштейн вновь отправился к Бессо домой и, даже не поздоровавшись, выпалил: «Спасибо, я полностью решил ту задачку». Позже он с гордостью вспоминал: «Моим решением был анализ концепции времени. Время не может быть определено абсолютно, и существует неразрывная связь между временем и скоростью сигнала». Следующие шесть недель он яростно прорабатывал все математические детали своего блестящего озарения и писал статью, которая, несомненно, представляет собой одну из важнейших научных работ в истории человечества. По словам сына, после этого Эйнштейн отдал работу Милеве для проверки и поиска всевозможных математических неточностей – и свалился на две недели больным. Окончательный вариант статьи «К электродинамике движущихся тел» представлял собой тридцать одну страницу не слишком разборчивого текста, но этим страницам суждено было изменить мировую историю.
В статье Эйнштейн не ссылается ни на какого из физиков; он только благодарит Микеле Бессо. (Эйнштейн был знаком с ранней работой Лоренца по этому предмету, но ничего не знал непосредственно о сокращении Лоренца, к которому пришел независимо от него.) В конце концов статья была опубликована в 17-м томе «Анналов физики» в сентябре 1905 г. Более того, в том знаменитом томе (то есть в комплекте выпусков журнала за год) были опубликованы одна за другой три выдающихся статьи Эйнштейна. Его коллега Макс Борн писал, что том 17 представляет собой «один из самых замечательных томов среди всей научной литературы. Он содержит три статьи Эйнштейна, каждая из которых посвящена отдельному вопросу и признана сегодня шедевром». (Несколько экземпляров этого знаменитого тома в 1994 г. были проданы с аукциона за $15 000.)
С захватывающим дух размахом Эйнштейн начал свою статью с заявления о том, что его теории не только описывают свойства света, но раскрывают истины о самой Вселенной. Замечательно, что он сделал все выводы из двух простых постулатов, относящихся к инерциальным системам отсчета (то есть к объектам, движущимся с постоянной скоростью относительно друг друга):
1. Законы физики одинаковы во всех инерциальных системах отсчета.
2. Скорость света постоянна во всех инерциальных системах отсчета.
Эти два обманчиво простых принципа знаменуют глубочайшее проникновение в природу Вселенной со времен Ньютона. Из них можно вывести совершенно новую картину пространства и времени.
Одним мастерским ударом Эйнштейн элегантно доказал, что если скорость света действительно является физической константой, то самым общим решением является преобразование Лоренца. Затем он показал, что уравнения Максвелла в самом деле удовлетворяют этому принципу и, наконец, что скорости складываются довольно необычным образом. Хотя Ньютон, наблюдая за движением парусных судов, сделал вывод о том, что скорости можно складывать без ограничений, Эйнштейн заключил, что скорость света – это максимально возможная во Вселенной скорость. Представьте на мгновение, что вы находитесь в ракете, несущейся прочь от Земли со скоростью, равной 90 % скорости света. А теперь выстрелите внутри ракеты пулей, скорость которой тоже составляет 90 % скорости света. Согласно физике Ньютона, пуля должна лететь относительно Земли со скоростью, равной 180 % скорости света, то есть намного обгонять свет. Но Эйнштейн показал, что, поскольку длины всех объектов в ракете уменьшаются, а время замедляется, сумма этих скоростей для внешнего наблюдателя на самом деле будет близка к 99 % скорости света. Более того, Эйнштейн сумел показать, что, как бы вы ни старались, вам никогда и ни при каких обстоятельствах не удастся разогнаться до скорости, превышающей скорость света. Скорость света – абсолютный предел скорости во Вселенной.
Мы никогда не видели этих странных искажений в собственной жизни, потому что мы не умеем передвигаться со скоростями, близкими к скорости света. Для привычных нам скоростей законы Ньютона прекрасно работают. В этом и состоит главная причина того, что первую поправку к законам Ньютона нашли только через пару сотен лет. Но представьте, как обернулось бы дело, если бы скорость света равнялась всего лишь 30 км/ч. Тогда машина, ехавшая по улице, казалась бы сплюснутой в направлении движения; она была бы сжата, как меха аккордеона, и была бы в длину, возможно, всего пару сантиметров, хотя по высоте оставалась бы прежней. Поскольку пассажиры при этом были бы сплюснуты вместе с машиной до толщины в пару сантиметров, можно было бы ожидать, что они будут вопить и визжать, чувствуя, как дробятся кости. На самом же деле пассажиры при этом не замечают ничего необычного, поскольку все внутри автомобиля, включая и атомы в человеческих телах, тоже сжимается в этой плоскости.
При торможении и остановке автомобиля он медленно расширился бы обратно от пары сантиметров до нескольких метров, и пассажиры вышли бы наружу как ни в чем ни бывало. Кто на самом деле был сжат? Вы или автомобиль? Согласно теории относительности, определить это невозможно, потому что концепция длины не имеет абсолютного смысла.
Задним числом понятно, что другие ученые подходили к открытию теории относительности невероятно близко. Лоренц и Фицджеральд получили ту же формулу, но совершенно неверно интерпретировали результат; они решили, что происходит электромеханическая деформация атомов, а не тонкое изменение самого пространства и времени. Анри Пуанкаре, признанный величайшим французским математиком своего времени, тоже приблизился к открытию. Он понял, что скорость света должна быть константой во всех инерциальных системах, и даже показал, что уравнения Максвелла сохраняют форму при преобразовании Лоренца. Однако он тоже не смог отказаться от ньютоновского подхода, от эфира, и считал, что все эти искажения связаны исключительно с электричеством и магнетизмом.
Эйнштейн же пошел дальше и совершил следующий судьбоносный прыжок. В конце 1905 г. он написал небольшую, почти тезисную статью, которой суждено было изменить мировую историю. Если линейки и показания часов искажаются тем сильнее, чем быстрее вы движетесь, то все, что можно измерить при помощи линейки и часов, тоже должно искажаться, включая вещество и энергию. Более того, вещество и энергия могут превращаться друг в друга. Эйнштейн сумел показать, что масса объекта увеличивается тем сильнее, чем быстрее он движется. (Мало того, его масса станет бесконечной, если он разгонится до скорости света – что невозможно и доказывает недостижимость скорости света.) Это означает, что энергия движения каким-то образом трансформируется в увеличение массы объекта. Таким образом, вещество и энергия взаимозаменяемы. Если расписать математически, сколько энергии переходит в массу, то в несколько простых строк можно получить, что E = mc2. Это самое знаменитое уравнение в истории. Поскольку скорость света – фантастически большое число, а его квадрат еще больше, получается, что даже из крохотного количества вещества может высвободиться громадное количество энергии. Так, в нескольких чайных ложечках вещества содержится энергия нескольких водородных бомб. А объема вещества размером с дом может оказаться достаточно, чтобы расколоть Землю пополам.
Формула Эйнштейна была не просто академическим упражнением. Он считал, что с ее помощью можно объяснить занятный факт, обнаруженный Марией Кюри: то, что всего 28 г радия излучают 4000 калории в час в течение неопределенно долгого времени, нарушая, казалось бы, первый закон термодинамики, который гласит, что полное количество энергии всегда постоянно, то есть сохраняется. Эйнштейн заключил, что масса радия по мере излучения энергии должна чуть-чуть уменьшаться (настолько чуть-чуть, что измерить это уменьшение средствами 1905 г. было невозможно). «Это удивительная и соблазнительная мысль; но не смеется ли над ней Всевышний и не мистифицирует ли меня – этого я не могу знать», – писал он. В конце следовал вывод о том, что непосредственная проверка его гипотезы «пока, вероятно, лежит за пределами возможного».
Но почему раньше никто не задумывался о таких запасах энергии? Эйнштейн сравнил это с ситуацией, когда сказочно богатый человек держит свое добро в секрете и никогда не тратит из него ни единого цента.
Банеш Хоффман, бывший студент, писал: «Представьте себе дерзость такого шага… Любой комок земли, любое перо, любая пылинка становится чудесным резервуаром неосвоенной энергии. В то время не было никакого способа это проверить. Тем не менее, представляя в 1907 г. свое уравнение, Эйнштейн говорил о нем как о важнейшем следствии теории относительности. Его необычайная способность видеть далеко вперед подтверждается тем фактом, что это уравнение было проверено… только через 25 лет».
Принцип относительности заставил кардинально пересмотреть классическую физику. Прежде физики верили в сохранение энергии, в первый закон термодинамики, согласно которому энергия не появляется и не исчезает. Теперь же они рассматривали как постоянную величину суммарное количество вещества и энергии.
В том же году беспокойный ум Эйнштейна разобрался еще с одной проблемой – проблемой фотоэлектрического эффекта. Еще в 1887 г. Генрих Герц заметил, что луч света, падая на металл, при определенных обстоятельствах вызывает слабый электрический ток. Здесь работает тот самый принцип, на котором основана значительная часть современной электроники. Солнечные батареи преобразуют обычный солнечный свет в электрическую энергию, которой питаются, к примеру, наши калькуляторы. Телекамеры воспринимают световые лучи от объекта и превращают их в электрические токи, которые в конечном итоге образуют телевизионную картинку на экране.
Однако в начале XX в. все это было полной загадкой. Луч света каким-то образом вышибал электроны из металла, но как он это делал? Ньютон в свое время считал, что свет состоит из крохотных частиц, которые он называл «корпускулами», но теперь физики убедились в том, что свет – это волна и, согласно классической волновой теории, его энергия не зависит от его частоты. К примеру, хотя частоты красного и зеленого света различны, сами лучи должны, по идее, обладать одинаковой энергией, а следовательно, когда они падают на металл, энергия выбиваемых электронов тоже должна быть одинаковой. Аналогично классическая волновая теория утверждала, что если увеличить интенсивность света, просто добавив ламп, то энергия этих электронов должна возрасти. Работа Филиппа Ленарда, однако, продемонстрировала, что энергия выбиваемых из металла электронов строго зависит от частоты или цвета светового луча, а не от его интенсивности, что противоречило утверждениям волновой теории.
Эйнштейн попытался объяснить фотоэлектронный эффект при помощи новой «квантовой теории», которую в 1900 г. предложил в Берлине Макс Планк. Надо отметить, Планк предпринял едва ли не самый радикальный отход от классической физики; он предположил, что энергия – не непрерывная величина, подобная жидкости; она существует в виде определенных дискретных пакетов, называемых «квантами». Энергия каждого кванта пропорциональна частоте света, а коэффициент пропорциональности представляет собой новую физическую константу, известную сегодня как «постоянная Планка». Одна из причин того, что мир атома и кванта такой причудливый, заключается в том, что постоянная Планка – очень маленькое число. Эйнштейн рассуждал, что если энергия существует в виде дискретных пакетов, то и свет может оказаться квантованным. (Пакет, или «квант света» по Эйнштейну, позже, в 1926 г., химик Гильберт Льюис окрестил «фотоном», или частицей света.) Эйнштейн рассуждал, что если энергия фотона пропорциональна соответствующей частоте света, то энергия выбитого из металла электрона тоже должна быть пропорциональна этой частоте, в противоположность классической физике. (Забавно отметить, что в популярном телесериале «Звездный путь» экипаж «Энтерпрайза» выпускает во врага «фотонные торпеды». В реальности простейшим пусковым устройством для фотонных торпед является обычный фонарик.)
Предложенная Эйнштейном новая картина – квантовая теория света позволяла делать прямые предсказания, которые можно было проверить экспериментально. Увеличивая частоту светового луча, можно было, если верить этой теории, измерить плавный рост генерируемого в металле напряжения. Эта историческая статья (которая со временем удостоится Нобелевской премии по физике) была опубликована 9 июня 1905 г. под заголовком «Об одной эвристической точке зрения, касающейся возникновения и превращения света». Выход этой статьи означал «рождение фотона», а также квантовой теории света.
Еще в одной статье, написанной все в том же 1905 «чудесном году», Эйнштейн разобрал проблему атома. Хотя атомная теория показывала замечательные результаты в определении свойств газов и химических реакций, прямых доказательств существования атомов по-прежнему не было, на что любили указывать Мах и другие критики. Эйнштейн рассудил, что существование атомов, возможно, удастся доказать, понаблюдав их действие на крохотные частицы в жидкости. Понятие «броуновское движение», к примеру, относится к небольшим случайным перемещениям маленьких частиц, взвешенных в жидкости. Это явление было открыто в 1828 г. ботаником Робертом Броуном, который, наблюдая пыльцу под микроскопом, заметил, что мельчайшие зерна пыльцы совершают странные хаотичные движения. Поначалу он решил, что эти зигзагообразные движения аналогичны движению мужских половых клеток – сперматозоидов, но затем обнаружил, что такие же странные дерганые движения можно наблюдать во взвеси крохотных зерен стекла или гранита.
Некоторые ученые предполагали, что броуновское движение, возможно, вызывается случайными столкновениями молекул, но никто не мог сформулировать разумную теорию этого явления. Однако Эйнштейн сделал следующий шаг, который оказался решающим. Он рассудил, что, хотя атомы слишком малы, чтобы их можно было видеть, их размер и поведение можно оценить исходя из суммарного воздействия на более крупные объекты. Если всерьез поверить в атомную теорию и разумно применить ее, то можно, анализируя броуновское движение, рассчитать физические размеры атомов. Предполагая, что случайные движения частички пыли в воде вызваны случайными ударами триллионов и триллионов молекул воды, он сумел вычислить размер и вес атомов, получив таким образом экспериментальное доказательство существования атомов.
Это было по меньшей мере поразительно! При помощи простого микроскопа Эйнштейн сумел вычислить, что в одном грамме водорода содержится 3,03 × 1023 атомов, что достаточно близко к реальной величине. Статья называлась «О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты» (18 июля 1905 г.). В этой несложной статье, по существу, было дано первое экспериментальное доказательство существования атомов. (По иронии судьбы всего через год после того, как Эйнштейн вычислил размер атомов, физик Людвиг Больцман покончил с собой, отчасти из-за постоянных насмешек, которым он подвергался за развитие атомной теории.)
После написания этих трех исторических статей Эйнштейн передал одну из своих более ранних работ (о размере молекул) своему консультанту профессору Альфреду Кляйнеру в качестве диссертации. В тот вечер они прилично выпили вместе с Милевой.
Поначалу диссертация Эйнштейна была отвергнута. Однако 15 января 1906 г. Цюрихский университет присвоил-таки Эйнштейну степень доктора философии. Теперь он мог называть себя «д-р Эйнштейн». Рождение новой физики произошло в жилище Эйнштейнов по адресу Берн, улица Крамгассе, 49. («Дом Эйнштейна» можно увидеть там и сегодня. Можно заглянуть в красивое эркерное окно, выходящее на улицу, и прочесть надпись на табличке, в которой говорится, что за этим окном была создана теория относительности. На другой стене можно увидеть изображение атомной бомбы.)
Таким образом, 1905 г. стал в истории науки настоящим annus mirabilis. Если мы попытаемся отыскать еще один чудесный год, сравнимый с этим, нам придется вернуться в 1666 г., когда 23-летний Исаак Ньютон открыл закон всемирного тяготения, предложил интегральное и дифференциальное исчисление, формулу бинома и теорию цвета.
Эйнштейн за 1905 г. успел изложить фотонную теорию, дать доказательство существования атомов и обрушить основы ньютоновой физики. Каждое из этих достижений было достойно международного признания. Однако, к разочарованию автора, все это было встречено оглушительным молчанием. Казалось, его работу попросту никто не заметил. Обескураженный Эйнштейн продолжал жить своей жизнью, растить ребенка и спокойно работать в патентном бюро. Может быть, мысль об открытии новых миров в физике – всего лишь несбыточная мечта.
В начале 1906 г., однако, внимание Эйнштейна привлек первый проблеск реакции. Он получил одно-единственное письмо, но пришло оно от самого, может быть, значительного физика того времени Макса Планка, мгновенно разглядевшего радикальные следствия работ Эйнштейна. В теории относительности Планка привлекло то, что некая величина – скорость света – возводилась в ранг фундаментальной физической константы. Постоянная Планка, к примеру, отделяла мир классической физики от субатомного квантового мира. Мы, люди, защищены от странных свойств атомов благодаря тому, что постоянная Планка очень мала. Планк почувствовал, что Эйнштейн тоже сделал из скорости света новую физическую константу. Получалось, что мы защищены от не менее причудливого мира космической физики громадностью этой константы.
По мнению Планка, эти две константы – постоянная Планка и скорость света – обозначили границы территории, на которой действовали «здравый смысл» и ньютонова физика. Мы не в состоянии увидеть таинственную и непонятную по природе своей физическую реальность из-за того, что постоянная Планка так мала, а скорость света так огромна. Если теория относительности и квантовая теория противоречили здравому смыслу, то только потому, что мы проживаем всю свою жизнь в крохотном уголке Вселенной – в защищенном мире, где скорости малы по сравнению со скоростью света, а объекты настолько велики, что мы никогда не сталкиваемся с постоянной Планка. Природе, однако, нет дела до нашего здравого смысла, она создала Вселенную на основе элементарных частиц, которые постоянно летают со скоростями, близкими к скорости света, и подчиняются формуле Планка.
Летом 1906 г. Планк поручил своему помощнику Максу фон Лауэ посетить скромного государственного служащего, который вынырнул, казалось, ниоткуда, чтобы бросить вызов наследию Исаака Ньютона. Они должны были встретиться в приемной патентного бюро, но, как ни смешно, не обратили друг на друга внимания, потому что фон Лауэ ожидал увидеть перед собой внушительного авторитетного мужчину. Когда же Эйнштейн наконец представился, фон Лауэ был удивлен: перед ним стоял совершенно другой, удивительно молодой и небрежно одетый чиновник. Они подружились на всю жизнь. (Однако фон Лауэ разбирался в сигарах. Когда Эйнштейн предложил ему сигару, фон Лауэ постарался незаметно выбросить ее в реку Ааре, когда тот отвернулся; в этот момент молодые люди, беседуя, шли по мосту.)
Получив благословение Макса Планка, работа Эйнштейна начала постепенно привлекать внимание и других физиков. По иронии судьбы особенно сильно работой бывшего студента заинтересовался один из старых профессоров Эйнштейна из Политехникума, называвший его в свое время за пропуски лекций «ленивой собакой». Математик Герман Минковский тоже взялся за дело и доработал уравнения относительности, пытаясь переформулировать наблюдение Эйнштейна о том, что по мере разгона время превращается в пространство, и наоборот. Минковский перевел все это на язык математики и пришел к выводу, что пространство и время образуют некую четырехмерную сущность. Внезапно все вокруг заговорили о четвертом измерении.
На карте для определения положения точки необходимы две координаты (широта и долгота). Если добавить третье измерение – высоту, можно определить положение в пространстве любого объекта, хоть кончика собственного носа, хоть конца Вселенной. Таким образом, видимый мир вокруг нас трехмерен. Некоторые писатели, такие как Герберт Уэллс, и раньше в своих книгах рассматривали время как четвертое измерение; в этом случае любое событие можно определить тремя координатами и моментом времени, в который это событие произошло. Например, если вы хотите встретиться с кем-то в Нью-Йорке, можно сказать: «Встречаемся в доме на углу 42-й улицы и Пятой авеню, на двенадцатом этаже, в полдень». Четыре числа точно определяют любое событие. Но четвертое измерение Уэллса было всего лишь идеей без всякого математического или физического содержания.
Минковский переписал уравнения Эйнштейна таким образом, чтобы раскрыть эту красивую четырехмерную структуру, навсегда увязав пространство и время в единую четырехмерную ткань. Минковский писал: «Теперь и навсегда пространство и время растворились до состояния легчайших теней, и только их союз сохранит хоть какую-то реальность».
Поначалу Эйнштейн не был особенно впечатлен этим результатом. Более того, он саркастически написал: «Главное – содержание, а не математика. Математикой можно доказать что угодно». Эйнштейн считал, что в основе теории относительности лежат базовые физические принципы, а не красивая, но бессмысленная четырехмерная математика, которую он именовал «лишней эрудицией». Для него главным было получить ясную и простую картинку (вспомните поезда, падающие лифты, ракеты), а математика приходила позже. В то время он считал, что математика – всего лишь бухгалтерия, необходимая для фиксирования происходящего на картинке.
Эйнштейн писал полушутя: «С тех пор как на теорию относительности набросились математики, я сам перестал ее понимать». Со временем, однако, он в полной мере оценил мощь работы Минковского и ее глубокие философские следствия. Минковский, по существу, показал возможность объединения двух на первый взгляд разных концепций при помощи симметрии. Пространство и время теперь следовало рассматривать как различные состояния одного и того же объекта. Аналогично энергию и вещество, а также электричество и магнетизм можно было связать через четвертое измерение. Объединение через симметрию стало одним из ведущих принципов Эйнштейна на всю оставшуюся жизнь.
Представьте себе снежинку. Если повернуть ее на 60°, форма снежинки останется прежней. Математики говорят, что объекты, сохраняющие форму при вращении, «ковариантны». Минковский показал, что уравнения Эйнштейна, подобно снежинке, остаются ковариантными при повороте пространства и времени как четырехмерных объектов.
Иными словами, рождался новый физический принцип, который дополнительно прояснял работу Эйнштейна: уравнения физики должны быть ковариантны относительно преобразований Лоренца (то есть сохранять свою форму при преобразованиях Лоренца). Эйнштейн позже признает, что без четырехмерной математики Минковского теория относительности «могла надолго остаться в пеленках». Замечательно, кстати, что новая четырехмерная физика позволяла ученым сжать все уравнения теории относительности до удивительно компактной формы. Каждый студент-электротехник или физик, впервые столкнувшийся с серией Максвелла в виде восьми дифференциальных уравнений в частных производных, уверен в их невероятной сложности. А новая математика Минковского сжала уравнения Максвелла и сократила их число до всего лишь двух. (Более того, при помощи четырехмерной математики можно доказать, что уравнения Максвелла представляют собой простейшие уравнения, описывающие свет.) Впервые физики смогли оценить мощь симметрии в своих уравнениях. Ученые, говоря о «красоте и элегантности» в физике, очень часто имеют в виду, что симметрия позволяет объединить большое количество различных явлений и концепций в единую, замечательно компактную форму. Чем красивее уравнение, тем большей симметрией оно обладает и тем большее число явлений может описать в кратчайшей форме.
Таким образом, сила симметрии позволяет нам объединить разрозненные события в гармоничное неделимое целое. Поворот снежинки, к примеру, позволяет увидеть единство всех ее точек. Поворот в четырехмерном пространстве объединяет концепции пространства и времени, превращает одно в другое по мере увеличения скорости. Красивая, элегантная концепция, согласно которой симметрия объединяет несопоставимые, казалось бы, сущности в гармоничное целое, вела Эйнштейна вперед следующие 50 лет.
Парадоксально, но Эйнштейн, завершив создание специальной теории относительности, начал терять к ней интерес; он предпочитал размышлять о другом, более глубоком вопросе – о проблеме гравитации и ускорения, выходивших на первый взгляд за пределы специальной теории относительности. Эйнштейн дал жизнь теории относительности, но, как любящий родитель, сразу же заметил в ней потенциальные недостатки и попытался их исправить. (Об этом мы подробнее поговорим позже.)
Тем временем начали появляться экспериментальные доказательства некоторых его идей, что, естественно, сделало автора более заметным членом физического сообщества. Эксперимент Майкельсона – Морли был не единожды повторен, каждый раз выдавая один и тот же отрицательный результат и бросая таким образом тень сомнения на всю эфирную теорию. Эксперименты по фотоэффекту подтвердили уравнения Эйнштейна. Более того, в 1908 г. эксперименты с высокоскоростными электронами подтвердили вроде бы, что масса электрона увеличивается с ростом скорости. Вдохновленный постепенно скапливавшимися экспериментальными результатами в пользу его теорий, Эйнштейн подал документы на должность лектора (приват-доцента) в соседнем Бернском университете. Приват-доцент – должность ниже профессорской, но у нее было преимущество: можно было параллельно продолжать работу в патентном бюро. Помимо печатных работ, Эйнштейн представил и свою диссертацию по теории относительности. Поначалу глава кафедры Айме Фостер ответил ему отказом, заявив, что теория относительности невразумительна, однако вторая попытка Эйнштейна увенчалась успехом.
В 1908 г., когда доказательства того, что Эйнштейн совершил крупный прорыв в физике, появлялись одно за другим, его кандидатура всерьез рассматривалась в качестве претендента на куда более престижный пост в Цюрихском университете. Однако тут Эйнштейн столкнулся с серьезной конкуренцией со стороны старого знакомого Фридриха Адлера. Оба претендента на этот пост были евреями, что работало против них, но Адлер был сыном основателя Австрийской социал-демократической партии, которой симпатизировали многие члены факультета, и было похоже, что Эйнштейна в этой гонке обойдут. Поэтому заявление самого Адлера, который решительно высказался в пользу Эйнштейна, вызвало общее удивление. Адлер хорошо разбирался в людях и верно оценил масштаб личности Эйнштейна. Он красноречиво описал выдающиеся качества Эйнштейна как физика, но отметил: «Еще студентом он вызывал презрительное отношение профессоров… Он не понимает, как находить общий язык с важными людьми». Благодаря необычайному самопожертвованию Адлера Эйнштейн получил место в университете и начал свое стремительное восхождение по академической лестнице. Он вернулся в Цюрих, но уже не безработным физиком, неудачником и «белой вороной», а профессором. Сняв в Цюрихе квартиру, он с радостью узнал, что Адлер живет в этом же доме этажом ниже; они стали хорошими друзьями.
В 1909 г. Эйнштейн прочел свою первую лекцию на своей первой крупной конференции по физике в Зальцбурге, где присутствовали многие знаменитости, включая и Макса Планка. В докладе «Развитие наших взглядов на природу и состав излучения» он убедительно представил миру формулу E = mc2. Эйнштейн, привыкший экономить на завтраках, изумлялся роскоши, царившей на той конференции. Он вспоминал: «Празднества завершились в отеле “Националь” самым роскошным банкетом, какой мне приходилось видеть в жизни. Это заставило меня сказать женевскому аристократу, сидевшему рядом со мной: “Знаете, что сделал бы Кальвин, окажись он здесь?.. Он воздвиг бы громадный столб и сжег бы всех нас за грешную расточительность”. Тот человек больше не сказал мне ни слова».
В докладе Эйнштейна впервые в истории была ясно и четко представлена слушателям концепция дуализма в физике – концепция, согласно которой свет может обладать одновременно свойствами и волны, как полагал Максвелл в предыдущем веке, и частицы, как полагал Ньютон. Частицей или волной увидит свет наблюдатель, зависит от эксперимента. В низкоэнергетических экспериментах, где длина волны света велика, полезнее волновая картина. Для высокоэнергетического луча, где длина волны света чрезвычайно мала, лучше подходит картина частицы. Позже выяснилось, что эта концепция (которую несколько десятилетий спустя припишут датскому физику Нильсу Бору) отражает фундаментальную природу вещества и энергии и дает богатейший материал для исследований в квантовой теории.
Став профессором, Эйнштейн остался человеком богемы. Один из студентов живо вспоминал его первую лекцию в Цюрихском университете: «Он появился в аудитории одетым довольно бедно, в слишком коротких брюках и с листочком бумаги размером с визитную карточку, на котором он набросал свои заметки к лекции».
В 1910 г. у Эйнштейна родился второй сын Эдуард. Эйнштейн, никогда не любивший подолгу сидеть на одном месте, уже занимался поисками новой работы, в частности потому, что некоторые профессора хотели удалить его из университета. В следующем году ему предложили должность с более высоким жалованьем в Немецком университете Пражского института теоретической физики. По иронии судьбы его кабинет там располагался рядом с лечебницей для душевнобольных. Размышляя над загадками физики, он нередко задумывался и над тем, кто на самом деле здоров – так называемые нормальные люди или обитатели лечебницы.
Тот же 1911 г. был ознаменован первым Сольвеевским конгрессом в Брюсселе, организованным на деньги богатого бельгийского промышленника Эрнеста Сольве, который хотел представить миру работы ведущих ученых. Эта конференция стала важнейшим научным событием своего времени и дала Эйнштейну шанс встретиться и обменяться идеями с гигантами физики. Он увиделся с Марией Кюри, дважды лауреатом Нобелевской премии, и завязал с ней добрые отношения на всю жизнь. В центре внимания ученых на конференции были теория относительности и фотонная теория Эйнштейна. Темой конференции была «Теория излучения и кванты».
Одним из вопросов, живо обсуждавшихся на конгрессе, был знаменитый «парадокс близнецов». Эйнштейн и прежде упоминал о странных парадоксах, связанных с замедлением времени. О парадоксе близнецов первым заговорил физик Поль Ланжевен; он предложил простой мысленный эксперимент, призванный прояснить некоторые кажущиеся противоречия теории относительности. (В то время газеты были полны сенсационными историями про Ланжевена, который был несчастливо женат, и про его скандальный роман с овдовевшей Марией Кюри.) Ланжевен рассматривал двух близнецов, живущих на Земле. Один из близнецов перемещается некоторое время со скоростью, близкой к скорости света, а затем возвращается на Землю. На Земле, допустим, прошло 50 лет, но близнец в ракете за счет замедления времени постарел всего на 10 лет. Когда близнецы наконец встречаются, они оказываются разного возраста – тот из них, кто летал в ракете, на 40 лет моложе своего брата.
А теперь посмотрите на ситуацию с точки зрения того близнеца, который летал в ракете. Он может сказать, что сам он находился в покое, а прочь уносилась Земля, так что часы должны были замедлиться у земного близнеца. В этом случае при будущей встрече моложе окажется земной, а не ракетный близнец. Но, поскольку движение относительно, какой же из близнецов на самом деле окажется моложе? Поскольку на первый взгляд две ситуации представляются симметричными, эта задачка и сегодня остается болезненной занозой для любого студента, который пытается разобраться с теорией относительности.
Для разрешения этой загадки, как указал Эйнштейн, надо учесть тот факт, что ускоряется близнец в ракете, а не на Земле. Ракете придется замедлиться, остановиться, а затем двинуться в обратную сторону, что, очевидно, создаст серьезный стресс для близнеца в ракете. Иными словами, ситуации не симметричны, потому что ускорения, не подпадающие под постулаты, на которых основана теория относительности, переживает только один близнец – тот, который в ракете; он и будет на самом деле моложе.
Однако ситуация становится сложнее и непонятнее, если улетевший на ракете близнец не возвращается. В этом сценарии каждый из близнецов видит в телескоп, как другой замедляется во времени. Здесь ситуации полностью симметричны, и каждый близнец убежден, что для другого время идет медленнее и что именно другой близнец остается моложе. Точно так же каждый из близнецов убежден, что второй сжат в направлении движения. Но в итоге-то – кто из близнецов моложе и тоньше? Какой бы парадоксальной ни казалась эта ситуация, в теории относительности действительно возможно существование двух близнецов, каждый из которых моложе и тоньше другого. Простейший способ определить во всех этих парадоксах, кто из них на самом деле тоньше или моложе, состоит в том, чтобы свести близнецов вместе. Для этого потребуется сдернуть одного из близнецов с пути и доставить ко второму; при этом, строго говоря, и определится, который из близнецов двигался «на самом деле».
Хотя эти головоломные парадоксы удалось косвенным образом разрешить в пользу Эйнштейна, на атомном уровне при изучении космических лучей и в экспериментах на ускорителях ядерных частиц, этот эффект настолько слаб, что непосредственно увидеть его в лаборатории удалось только в 1971 г., когда самолеты с атомными часами долго летали на больших скоростях. Атомные часы способны измерять временны́е интервалы с астрономической точностью, поэтому ученые, сравнивая показания двух часов, могли убедиться в том, что чем быстрее движутся часы, тем медленнее для них идет время, в точности как предсказал Эйнштейн.
В другом парадоксе фигурируют два объекта, каждый из которых короче другого. Представьте себе охотника, который пытается поймать трехметрового тигра в клетку длиной не более полуметра. В обычных условиях это невозможно. А теперь представьте, что тигр движется так быстро, что сжимается до полуметра, так что, если опустить на него клетку, он окажется внутри. Естественно, после этого тигр резко затормозится – и удлинится. Если клетка сделана из сетки, тигр, увеличиваясь, ее разорвет. Если клетка сделана из бетона, то бедный тигр будет раздавлен.
А теперь взгляните на ситуацию с точки зрения тигра. Если тигр неподвижен, то клетка находится в движении и сжата до трех сантиметров. Как в такую маленькую клетку можно поймать трехметрового тигра? Ответ в том, что клетка, опускаясь, сжимается в направлении движения и становится параллелограммом, перекошенным квадратом. Таким образом, два конца клетки необязательно попадают в тигра одновременно. То, что одновременно для охотника, не является одновременным для тигра. Если клетка сетчатая, то передняя ее часть опустится на нос тигра первой и начнет рваться. По мере дальнейшего падения клетка будет рваться дальше вдоль тела тигра, пока задний ее конец не опустится зверю на хвост. Если клетка бетонная, то первым будет раздавлен нос тигра, а затем, по мере опускания клетки, все остальное последовательно до самого хвоста.
Эти парадоксы захватили воображение не только ученых, но и широкой публики. В юмористическом журнале Punch даже появился следующий шуточный лимерик:
Юная леди по имени Кэт
Двигалась много быстрее, чем свет.
Но попадала всегда не туда:
Быстро помчишься – придешь во вчера.
(Перевод А. И. Базя)
В это время друг Эйнштейна Марсель Гроссман, который был на тот момент профессором в Политехникуме, поинтересовался у Эйнштейна, не хочет ли тот поработать в своей alma mater в качестве ординарного профессора. Рекомендательные письма характеризовали Эйнштейна в самых лучших выражениях. Мария Кюри, например, писала, что «специалисты по математической физике единодушно оценивают его работу как первоклассную».
В результате через шестнадцать месяцев после переселения в Прагу Эйнштейн вновь вернулся в Цюрих и старый Политехникум. Возвращение в Политехникум (который с 1911 г. стал называться Швейцарским федеральным технологическим институтом), на этот раз в качестве знаменитого профессора, означало для Эйнштейна личную победу. Когда он покидал университет, его имя было запятнано, а профессора, такие как Вебер, активно противодействовали его карьере. Вернулся же он вождем новой революции в физике. В том же году он был в первый раз номинирован на Нобелевскую премию. Правда, Шведская академия по-прежнему считала его идеи слишком радикальными, да и среди нобелевских лауреатов раздавались голоса несогласных, которые выступали против номинирования его на премию. В результате Нобелевская премия 1912 г. досталась не Эйнштейну, а Нильсу Густаву Далену за работу по улучшению маяков. (По иронии судьбы сегодня маяки в значительной мере устарели благодаря появлению спутниковых систем навигации, в работе которых теория относительности Эйнштейна играет далеко не последнюю роль.)
В следующем году репутация Эйнштейна росла так стремительно, что им начали интересоваться в Берлине. Макс Планк жаждал заполучить эту восходящую звезду физики к себе, а Германия в то время была бесспорным мировым лидером в физических исследованиях, главный центр которых находился в Берлине. Эйнштейн некоторое время колебался – ведь он отказался от немецкого гражданства и до сих пор хранил горькие воспоминания юности, но предложение было слишком соблазнительным.
В 1913 г. Эйнштейн был избран в Прусскую академию наук, а чуть позже ему было предложено занять пост в Берлинском университете. Предполагалось сделать его директором Института физики Общества кайзера Вильгельма. Помимо громких должностей, которые мало что для него значили, это предложение было особенно привлекательным для Эйнштейна еще по одной причине: там от него не требовалось преподавать. (Хотя лекции Эйнштейна пользовались популярностью, так как было известно, что он доброжелательно и с уважением относится к своим студентам, преподавание отвлекало от главного, что его интересовало, – от общей теории относительности.)
В 1914 г. Эйнштейн прибыл в Берлин для встречи с членами факультета. Он немного нервничал под их внимательными и оценивающими взглядами. Позже Эйнштейн напишет: «Господа в Берлине ставят на меня как на призовую курицу-несушку. Что же до меня, то я даже не знаю, смогу ли снести еще хоть одно яйцо». Тридцатипятилетний бунтарь со странными политическими взглядами и еще более странным внешним видом вскоре вынужден был приспосабливаться к строгим чопорным порядкам Прусской академии наук, члены которой обращались друг к другу «тайный советник» и «ваше превосходительство». Эйнштейн задумчиво писал: «Кажется, большинство членов ограничиваются тем, что демонстрируют какое-то петушиное величие на письме; в остальном они вполне похожи на людей».
Триумфальное восхождение из патентного бюро в Берне к вершинам немецкой физики недешево обошлось Эйнштейну в личном плане. По мере того как начала расти его слава в физическом сообществе, личная жизнь начала разваливаться. Для Эйнштейна эти годы были самыми продуктивными, они принесли плоды, которым со временем суждено было изменить историю человечества. Однако ученый совершенно не имел свободного времени, и он заметно отдалился от жены и детей.
Эйнштейн писал, что жизнь с Милевой была подобна жизни на кладбище, он избегал находиться с ней наедине. Его друзья разошлись во мнениях о том, кто из супругов был в первую очередь виноват в разрыве. Многие считали, что Милева все сильнее замыкалась в себе и злилась на своего знаменитого мужа. Даже друзья Милевы с грустью признавали, что за эти годы она сильно постарела и заметно сдала. Она становилась все более скандальной и холодной и ревновала мужа даже к коллегам. Обнаружив письмо с поздравлением, присланное Эйнштейну Анной Шмид (которая познакомилась с Эйнштейном во время его недолгой учебы в Арау и после благополучно вышла замуж), она сорвалась и устроила Альберту самый, может быть, громкий скандал за все время их и без того уже непрочного брака.
В то же время некоторые считали, что Эйнштейн определенно не был идеальным мужем; он постоянно куда-то спешил, оставляя Милеву практически в одиночку воспитывать двоих детей. Не секрет, что путешествия в начале XX в. были делом непростым и небыстрым, поэтому Эйнштейн часто отсутствовал дома по несколько дней и даже недель. Как корабли в ночном море, они встречались ненадолго, когда Эйнштейн оказывался дома, обедали вместе или посещали театр. Он был настолько погружен в абстрактный мир математики, что энергии (в первую очередь эмоциональной) на общение с женой и поиск подходов к ней у него почти не оставалось. Хуже того, чем больше она жаловалась ему на одиночество и на то, что его почти никогда не бывает рядом, тем больше он удалялся от нее в мир физики.
Вероятно, мы будем правы, если скажем, что в той и другой позиции была, безусловно, доля истины и что обвинять кого-то одного бессмысленно. Задним числом можно сказать, что такой брак был обречен на невыносимые перегрузки. Возможно, их друзья много лет спустя были правы, говоря, что эти двое были попросту несовместимы.
Однако окончательный разрыв стал неизбежен после того, как Эйнштейн принял предложение из Берлина. Милеве не хотелось ехать в Берлин. Возможно, она, как славянка, очень скованно чувствовала себя в центре тевтонской культуры; что еще важнее, в Берлине жили многие родственники Эйнштейна, и Милева боялась оказаться под их суровыми неодобрительными взглядами. Ни для кого не было секретом, что родственники мужа ее ненавидят. Поначалу Милева и дети все же поехали в Берлин с Эйнштейном, но затем она внезапно взяла детей и уехала в Цюрих. Больше они никогда не жили вместе. Эйнштейн, обожавший своих детей, был опустошен. После этого он вынужден был поддерживать отношения с сыновьями на расстоянии; чтобы увидеться, ему нужно было совершить изматывающее десятичасовое путешествие из Берлина в Цюрих. (Когда со временем права на воспитание детей были признаны за Милевой, Эйнштейн, по словам его секретаря Хелен Дукас, проплакал всю дорогу домой.)
Был, вероятно, еще один фактор, заметно ускоривший разрыв, – все более заметное присутствие в Берлине рядом с Эйнштейном некоей его кузины. Он признавался: «Я живу очень замкнутой жизнью, но вовсе не одинокой, благодаря заботе одной моей кузины, которая, собственно, и перетянула меня в Берлин».
Эльза Лёвенталь была Эйнштейну двойной кузиной: матери ее и Эйнштейна были сестрами, а деды – братьями. Она была разведена и жила с двумя дочерьми, Марго и Илзой, этажом выше своих родителей (приходившихся Эйнштейну дядей и тетей). Они с Альбертом встречались мельком в 1912 г., когда он ненадолго приезжал в Берлин. К тому моменту Эйнштейн уже решил, по всей видимости, что его брак с Милевой рухнул и разрыв неизбежен, но боялся, что развод может отрицательно сказаться на его маленьких детях.
Эльзе Альберт нравился с детства. Она призналась, что влюбилась в него еще ребенком, когда услышала, как он играет Моцарта. Но больше всего, похоже, ее привлекал в нем статус восходящей звезды научного мира и уважение, которое испытывали к нему физики всего мира. Более того, она не скрывала, что ей очень нравится купаться в лучах его славы. Как и Милева, она была на четыре года старше Эйнштейна. На этом, однако, сходство между этими двумя женщинами заканчивалось, скорее они были полярно противоположны друг другу. Эйнштейн в своем бегстве от Милевы, судя по всему, бросился в другую крайность. Если Милева не слишком заботилась о своей внешности и постоянно выглядела загнанной, то Эльза отличалась мещанством и остро чувствовала социальные различия. Она постоянно заводила знакомства в интеллектуальных кругах Берлина и с гордостью демонстрировала Эйнштейна всем своим друзьям из высшего общества. В отличие от Милевы, которая была немногословна, замкнута и склонна к дурному настроению, Эльза была светской бабочкой, порхающей между приемами, раутами и театральными премьерами. И в отличие от Милевы, которая быстро отказалась от попыток переделать мужа, Эльза вела себя по отношению к нему скорее как мать, постоянно поправляла его манеры и всеми силами стремилась помочь ему сделать карьеру. Один русский журналист позже так охарактеризовал отношения между Эйнштейном и Эльзой: «Она полна любви к своему великому мужу, всегда готова заслонить его от грубого вмешательства жизни и обеспечить душевное спокойствие, необходимое для созревания великих идей. Она проникнута сознанием его великого предназначения как мыслителя и самыми нежными чувствами спутницы, жены и матери к этому замечательному, тонкому взрослому ребенку».
После того как Милева в гневе покинула Берлин в 1915 г., взяв с собой детей, Эйнштейн и Эльза сблизились еще сильнее. Однако внимание Эйнштейна в этот важный для него период было поглощено не любовью, а самой Вселенной.