Глава 14
Темные аллели. Генетическая совместимость, наследственные заболевания, генная терапия, искусственное оплодотворение, ДНК-диагностика
У меня была идея написать отдельную главу под названием “50 оттенков гена” и посвятить ее наиболее животрепещущим достижениям генной терапии. Например, созданию самцов крыс, у которых возникает эрекция, если на их половые органы направить синий свет336. Только представьте потенциал такого подхода к лечению импотенции! Хочешь незабываемую ночь? Не забудь фонарик! Подари подруге лампочку в знак серьезности своих намерений! Упомянутые крысы были созданы в 2015 году учеными из Швейцарии. Перенесенный в клетки эректильной ткани пениса ген был специально сконструирован с использованием современных знаний в области оптогенетики – внедрения генов светочувствительных белков, активность которых регулируется извне с помощью источников света.
Разработка биотехнологий, улучшающих половую функцию человека, ведется, но сюжет фильма “Идиократия” предостерегает меня от того, чтобы делать на этом акцент. В фильме ученые, вместо того чтобы усовершенствовать природу человека (например, сделать его умнее или побороть старение), последовали запросам общества потребления и вложили все усилия в увеличение размера мужского полового члена и объема женской груди. Тем временем в условиях отсутствия естественных хищников и нарастающего прогресса медицины, способной пришить утраченную (в том числе и по глупости) конечность, оказалось, что больше не нужно быть умным, чтобы выжить и оставить потомство. Эволюционное преимущество появилось у людей, не думающих ни о чем, кроме собственного размножения, и не умеющих правильно использовать средства контрацепции.
Так наступила “идиократия” – в обществе получила преимущество оппортунистическая R-стратегия размножения, противоположная К-стратегии. Первая основана на порождении большого количества потомков, выживание каждого из которых не принципиально для успешного продления рода (берем количеством). Вторая – на высокой вероятности выживания каждого из немногочисленных потомков (берем качеством, в том числе и интеллектом). Обратите внимание, что против улучшения человека методами генной инженерии часто выступают те же самые люди, которым по религиозным и иным мировоззренческим убеждениям не нравятся презервативы и другие средства контрацепции, а также искусственное оплодотворение. Зато их вдохновляет перспектива загробной жизни и медаль за “производство и выращивание” семерых детей.
В детстве я прочитал Библию, и меня очень удивила история про набожного праведника Иова. На него обрушиваются тяжелые испытания, в ходе которых он теряет всех своих сыновой и дочерей, но, несмотря на эту трагедию, остается верен Богу. За это Бог награждает Иова и компенсирует ему нанесенный ущерб – у праведника снова рождается семеро сыновей и три дочери. Все, что произошло с Иовом, – результат спора между Богом и Сатаной на тему бескорыстности веры, а история должна была показывать, что Бог справедлив к тем, кто от него не отрекается в трудную минуту. Однако мне сложно себе представить, чтобы хороший человек считал своих детей заменимыми и ценил их количество, а не личностные качества.
Нетрудно догадаться, что мне ближе К-стратегия. Меньше всего на свете я бы хотел завести ребенка, обреченного на страдания в результате наследственного или иного заболевания, – никакое количество здоровых “запасных” потомков не решит проблему. Поэтому мне кажутся чрезвычайно важными направления современной науки, которые пытаются предотвратить распространение неблагоприятных вариантов генов (аллелей) в популяции и сделать так, чтобы каждый ребенок рождался и рос здоровым.
Генофонд человечества может избавиться от вредных мутаций разными способами. Премия Дарвина ежегодно присуждается лицам, освободившим генофонд от своих генов (умерев или потеряв способность иметь детей) наиболее нелепым способом. Одна из самых знаменитых Дарвиновских премий была дана человеку (в порядке исключения живому и сохранившему репродуктивную функцию) за попытку покончить с жизнью, наглотавшись нитроглицерина, с последующим многократным “ударением себя об стену” с целью вызвать детонацию в желудке. Возможно, именно отсюда пошло столь популярное в интернете выражение “убей себя об стену”? К счастью, человек почти не пострадал. Но есть и разумные способы улучшения генофонда, не требующие человеческих жертв: исправление ошибок в генах с помощью генной терапии и методы планирования беременности, исключающие риск серьезных наследственных заболеваний.
Про некоторые влюбленные пары говорят: “вы просто созданы друг для друга”. Мне ближе взгляды австралийского музыканта Тима Минчина, который посвятил своей любимой песню с ироничными словами: “если бы у меня не было тебя, наверно, у меня была бы другая”. Понятно, что из сотен миллионов потенциальных партнеров или партнерш, живущих на Земле, мы выбираем не самых идеальных. Мы встречаем кого-то, кто нам нравится, а дальше привязываемся (или не привязываемся) к человеку, и уже сама привязанность делает “вторую половину” уникальной.
В 1960 году американский математик Мартин Гарднер сформулировал математическую задачу “о разборчивой невесте”. Невеста ищет себе единственного жениха, причем известно число претендентов на эту роль (n). Это не количество всех возможных женихов, а максимальное количество женихов, с которыми можно успеть пообщаться до желаемого момента свадьбы. Например, если на вдумчивое общение с каждым претендентом уходит месяц, а замуж нужно выйти через пять лет, то n = 60. Невеста общается с претендентами в случайном порядке и может сказать про каждого претендента, лучше он или хуже, чем любой из предыдущих. После общения принцесса либо раз и навсегда отказывает текущему кандидату в женихи, либо принимает его руку и сердце.
Оказывается, что, если число потенциальных претендентов велико, нужно сначала отказать n/e претендентам (где e ~ 2,718 – основание натурального логарифма), а далее выбрать первого, кто будет лучше, чем все предыдущие. В этом случае вероятность того, что выбор падет на самого лучшего жениха, максимальна и примерно равна 37 %.
Жизнь сильно отличается от математической модели: претенденты могут возвращаться, не все они надежны, да и наличие нескольких претендентов, “оцениваемых” одновременно, не является чем-то из области фантастики. Проблема возникает и при попытке оценить, какой партнер или партнерша нам больше подходит. И хотя современная наука не ответит за нас на этот вопрос, она может кое-что сказать про генетическую совместимость двух людей – оценить вероятность рождения ребенка с врожденным дефектом.
В качестве примера рассмотрим серповидноклеточную анемию. Это наследственное заболевание вызывается мутацией гена гемоглобина, который расположен на ii-й хромосоме. Если обе копии гена испорчены, эритроциты принимают аномальную серповидную форму. Серповидные клетки могут закупоривать капилляры, ограничивая поток крови к тканям, что систематически приводит к сильным болевым ощущениям, а в ряде случаев – к повреждению органов. Кроме того, люди с этим недугом чаще страдают от инфекционных заболеваний и имеют повышенный риск инсульта.
Человек, не страдающий серповидноклеточной анемией, сам того не зная, может быть носителем одной испорченной копии гена гемоглобина. Такие люди здоровы, но если двое носителей мутации захотят завести ребенка, то с вероятностью 25 % ребенок родится с анемией. Казалось бы, носители испорченного гена имеют сниженные шансы оставить здоровое потомство. Почему же вредная мутация не была устранена из популяции силой естественного отбора?
Оказывается, что “вредность” того или иного генетического варианта нередко зависит от условий, в которых живет его носитель. Иметь два испорченных варианта гена гемоглобина плохо, но одна испорченная копия дает человеку повышенную устойчивость к возбудителю малярии337. В популяции, подверженной малярии, быть единственным человеком с одной нормальной и одной испорченной копией гена гемоглобина выгодно: и анемия детям не грозит (ведь для этого второй родитель тоже должен быть носителем испорченного варианта гена), и от малярийного паразита защищен. Из поколения в поколение мутация будет распространяться в популяции, пока количество людей с таким вариантом гена не станет слишком большим, а риск встретить партнера, являющегося носителем такой же мутации, – слишком высоким. Когда защита от малярии перестанет компенсировать высокий риск анемии у потомства, рост частоты испорченного аллеля гемоглобина остановится. Возникает своеобразное равновесие: там, где малярии не бывает, испорченный аллель встречается редко, а там, где малярия распространена (например, в Африке), он встречается часто, но далеко не у всех.
Сегодня с помощью генетического анализа можно узнать о наличии у человека почти любых распространенных мутаций, ведущих к наследственным заболеваниям. Кроме серповидноклеточной анемии, существуют десятки других болезней разной степени тяжести. Фенилкетонурия приводит к поражению центральной нервной системы и нарушению умственного развития. При муковисцидозе поражаются железы внешней секреции и органы дыхания. При гемофилии даже маленькая ранка может привести к серьезной кровопотере, а ушиб – к значительному внутреннему кровоизлиянию. Синдром Ретта является причиной тяжелой умственной отсталости. Наследственная мышечная дистрофия ведет к неспособности самостоятельно передвигаться и даже дышать. Список болезней можно продолжать.
Проблемы с наследственными заболеваниями часто возникают при близкородственных браках. В примере с серповидноклеточной анемией носитель испорченного варианта гена не рискует родить ребенка с тяжелым наследственным заболеванием, пока не столкнется с другим носителем той же самой болезни. Вероятность встретить такого человека среди близких родственников намного выше. Рассмотрим муковисцидоз – заболевание, которое встречается в России примерно в одном случае на 10 тысяч новорожденных. Если партнер и партнерша выбраны произвольно, то с вероятностью 0,02 каждый из них окажется носителем, а риск муковисцидоза у их ребенка будет среднестатистическим (1/10 000 = 0,02*0,02*0,25). Если партнер является родным братом партнерши, то у каждого из них вероятность оказаться носителем заболевания по-прежнему равна 0,02, но эти вероятности перестают быть независимыми, они оказываются “сцепленными". Стоит нам установить, что партнер – носитель заболевания, вероятность того, что носителем окажется и партнерша, станет 0,5, а не 0,02. Из-за этого у ребенка брата и сестры риск муковисцидоза увеличивается в 25 раз и становится равным 0,0025.
Если сестра родит от брата, у их ребенка есть дополнительные 1,25–10,5 % шансов родиться с каким-нибудь наследственным заболеванием, из-за которого он утратит репродуктивную функцию или умрет до достижения совершеннолетия338. Если речь идет не о родных братьях и сестрах, а о двоюродных, то дополнительная вероятность наследственных заболеваний будет в два раза меньше. Возможно, с проблемами близкородственных браков связано распространенное во многих культурах табу на инцест. Похожая логика относится не только к откровенно вредным мутациям, которые могут приводить к серьезным врожденным заболеваниям, но и к мутациям чуть менее вредным, делающим нас слабее, глупее, менее устойчивыми к инфекциям, более предрасположенными к раку и так далее.
Есть и обратный эффект. Селекционеры давно обратили внимание на эффект гетерозиса – повышенной приспособленности гибридов, полученных в результате скрещивания разнородных родителей. При таком скрещивании хромосомы у потомков оказываются максимально разнообразными, присутствуют альтернативные аллели одних и тех же генов, не проявляются вредные рецессивные признаки.
При планировании беременности часто обращают внимание на резус-фактор. У резус-отрицательных людей, составляющих около 15 % населения Европы, нет гена, кодирующего резус-фактор, или этот ген испорчен. Проблема в том, что у резус-отрицательной матери может возникнуть иммунная реакция на резус-положительный плод. Функция резус-фактора все еще является загадкой для современной науки, но мы знаем, что люди прекрасно живут без него. Кажется, что наличие резус-фактора в популяции только вредит резус-отрицательным женщинам и резус-положительным мужчинам. Почему же оба генетических варианта так распространены?
Профессор Пражского университета Ярослав Флегр считает, что здесь, как и в случае с испорченной копией гена гемоглобина, имеется положительный эффект комбинации двух аллелей. Исследования научной группы Флегра говорят о том, что резус-положительные люди лучше защищены от некоторых негативных последствий заражения одноклеточным паразитом, принадлежащим к тому же типу, что и возбудитель малярии, – токсоплазмой (Toxoplasma gondii.)339.
Считается, что токсоплазмой заражено около 30 % населения Земли340, и известно, что она умеет проникать в мозг млекопитающих, в том числе человека. Возможно, метафора “тараканы в голове" не так уж далека от реальности? Инфицированные токсоплазмой грызуны, манипулируемые этим паразитом, бегут на запах кошачьей мочи, а паразит благодаря этому попадает вместе с закуской внутрь кошки и продолжает свой жизненный цикл. Хотя заражение токсоплазмой чаще всего не вызывает у людей серьезных проблем со здоровьем, считается, что оно повышает риск шизофрении и депрессии, а также может нарушать координацию движений, из-за чего люди чаще попадают в автомобильные аварии341. Кроме того, токсоплазма может вызывать серьезные заболевания при передаче от матери к плоду, поэтому при планировании беременности матерям рекомендуется провериться на этого паразита, а при его наличии проконсультироваться с врачом насчет методов лечения.
Если в вашем роду не было наследственных заболеваний, то генетический тест с большой вероятностью покажет, что носителями опасных аллелей генов вы не являетесь. Не скрою, что испытал радость, узнав по результатам анализа ДНК, что не являюсь носителем известных наследственных заболеваний. Если партнер и партнерша являются носителями одного и того же заболевания (или если мать является носителем наследственного заболевания, сцепленного с Х-хромосомой, вроде тяжелой формы гемофилии), они сильно рискуют при попытке завести ребенка “стандартным путем”. Возможно, в будущем станут популярны сайты знакомств, где поиск партнера будет осуществляться с учетом наследственной информации. Но что делать тем парам, которые уже нашли друг друга и оказались “генетически несовместимы”? Не заводить детей или расставаться из-за капризов природы?
На помощь таким парам приходит искусственное оплодотворение. Для этого у партнерши берется несколько яйцеклеток, которые оплодотворяются в пробирке сперматозоидами партнера. Оплодотворенным яйцеклеткам дают время поделиться, пока не будет достигнуто определенное количество клеток в эмбрионе (около восьми). Затем одну клетку из такого эмбриона вынимают и проводят диагностику содержащегося в ней генетического материала (это называется преимплантационная генетическая диагностика). Если сочетаний генетических вариантов, опасных для здоровья, не найдено, оставшийся эмбрион переносят в утробу матери, где он развивается самым обычным способом. Этот подход позволяет исключить не только те наследственные заболевания, которые возникают в результате плохой комбинации генов родителей, но и заболевания в результате каких-то новых мутаций или хромосомных нарушений (например, ведущих к синдрому Дауна). На ранних этапах эмбриогенеза все клетки эмбриона обладают потенциалом дать целый организм, и удаление одной клетки не приводит к каким-либо нарушениям развития.
Число детей, рожденных при помощи методов искусственного оплодотворения, уже перевалило за 4 миллиона – и с ними все в порядке (хотя, конечно, не все такие дети проходили преимплантационную генетическую диагностику). Повышенных рисков каких-либо серьезных отклонений в физическом342 или в умственном развитии343 “детей из пробирки” ученые пока не нашли. Небольшие отличия, которые наблюдаются между группами детей (вроде отличий в средних значениях кровяного давления или количестве жировой ткани), могут быть связаны с генетическими или иными особенностями их родителей. Люди прибегают к искусственному оплодотворению не потому, что это какая-то модная роскошь, а либо потому, что им не удается зачать ребенка обычным способом, либо потому, что они являются носителями опасных наследственных заболеваний.
Некоторые врачи считают, что искусственное оплодотворение может негативно сказаться на здоровье матери – увеличить риск рака молочной железы, яичников или слизистой оболочки матки. Прежде всего такое повышение риска может быть связано с использованием гормональных препаратов, стимулирующих созревание яйцеклеток. Некоторые исследования не подтверждают этих опасений344, другие указывают на небольшое увеличение риска (в 1,07-1,71 раза)345.
Однако стоит учитывать, что повышенный риск рака обнаружен при сравнении женщин, родивших при помощи искусственного оплодотворения, и женщин, родивших самостоятельно. Эти группы могут существенно отличаться по многим неучтенным факторам, например генетическим, то есть у нас нет хорошей контрольной группы. Кроме того, техники искусственного оплодотворения постоянно совершенствуются, и хотя вопрос о возможности неблагоприятных последствий искусственного оплодотворения для здоровья матери все еще считается открытым, альтернативой является куда более существенный риск рождения больного ребенка или невозможность завести детей. Практическая рекомендация здесь следующая: если у вас есть какие-то из упомянутых оснований прибегнуть к искусственному оплодотворению – не бойтесь этого. Если веских оснований нет – размножайтесь классическим путем.
Еще один подход к планированию беременности заключается в проведении неинвазивной (и поэтому абсолютно безопасной) генетической диагностики плода на самых ранних этапах беременности. Некоторые современные методы чтения ДНК очень чувствительны. С их помощью можно обнаружить мутации в ДНК плода346, присутствующей в небольшом количестве в плазме крови матери. В случае обнаружения опасных сочетаний наследственных мутаций у развивающегося организма родители могут решить, хотят ли они произвести на свет больного ребенка, а если дефектов нет – расслабиться и спать спокойно.
Успехи, достигнутые благодаря генетической диагностике, велики. Например, удалось практически полностью побороть опасное нейродегенеративное заболевание – болезнь Тея – Сакса, от которой страдали преимущественно евреи-ашкеназы347. Другой пример – удалось на порядок сократить встречаемость серповидноклеточной анемии на Сардинии348. Но на этом успехи современной генетики не заканчиваются.
Рожденным с наследственными заболеваниями людям может помочь генная терапия. Чаще всего генетическое заболевание связано с тем, что в клетках человека не работает какой-то важный ген. Причем, как правило, это критично даже не для всех клеток человека, а только для их определенного типа. Например, фактор свертывания крови IX человека, нарушение производства которого приводит к гемофилии, вырабатывается в печени, а потом выбрасывается в кровь. Значит, при наличии упомянутого дефекта достаточно исправить геном клеток печени или хотя бы части из них. Не обязательно вмешиваться в работу каждой клетки.
До появления генной терапии гемофилию пытались лечить симптоматически – с помощью фактора IX из генетически модифицированных клеток хомяка. Клинические испытания показали, что полученный “рекомбинантный” белок ничем не уступает обычному человеческому фактору IX, и он нашел широкое применение в медицине349. В клетках бактерий синтезировать правильный белок не получалось: фактор IX подвергается многочисленным модификациям внутри клеток человека и других млекопитающих при своем “созревании”, а у бактерий этих модификаций не происходит. К сожалению, из-за сложности технологии получения лекарства, инъекции концентрата фактора IX стоят довольно дорого. К тому же они дают лишь краткосрочный эффект (на несколько дней), плюс возможны побочные эффекты, связанные с резким увеличением количества фактора IX в крови после укола, и делать такие уколы приходится регулярно. Было бы очень удобно, если бы пациент мог решить проблему раз и навсегда – вылечить болезнь одной инъекцией.
При генной терапии гемофилии генетически измененные вирусы, лишенные способности вызывать инфекцию, доставляют работающую копию гена фактора свертывания крови IX в клетки печени человека. Вирус для доставки генов выбирают не случайно. Это должен быть такой вирус, который избирательно проникает в клетки определенного типа. Специфичность проникновения обусловлена тем, что вирус распознает особые белки, встречающиеся только на поверхности определенных типов клеток. Так, к примеру, ВИЧ направленно поражает клетки иммунной системы, а вирус гепатита – как раз устремляется в печень. У безобидных ГМ вирусов, используемых для генной терапии, возможности аналогичные. В итоге клетки печени человека начинают производить недостающий белок самостоятельно.
Для генной терапии гемофилии подошел аденовирус AAV8, проникающий специфически в клетки печени350. В 2014 году были обнародованы результаты клинических испытаний, в ходе которых генная терапия улучшила состояние десяти пациентов с тяжелой формой гемофилии351. После одной-единственной инъекции пациенты продолжали производить IX фактор свертывания крови самостоятельно на протяжении более трех лет. Количество производимого IX фактора зависело от количества вируса, назначенного пациентам. В группе, получившей максимальную дозу лекарства, оно достигало 5 % от нормы. Этого недостаточно, чтобы считать пациентов здоровыми, но достаточно для существенного снижения частоты кровотечений и уменьшения расходов на лекарства.
В сентябре 1971 года родился мальчик Дэвид Веттер с тяжелым синдромом врожденного иммунодефицита, связанного с мутацией в одном из генов, расположенных на Х-хромосоме. Обычно такие дети погибают из-за инфекций в течение первого года жизни. Дэвиду удалось прожить значительно дольше благодаря тому, что он постоянно находился в стерильном помещении. Пищу, которую он ел, игрушки, в которые он играл, – все стерилизовали, перед тем как предложить ребенку. Для того чтобы мальчик мог выходить на улицу, ему сделали специальный скафандр.
Несмотря на то что на уход за Дэвидом в сумме ушло более миллиона долларов, а его родителей консультировали ведущие специалисты, никто так и не придумал, как вылечить врожденное заболевание. Единственное, что пришло в голову врачам, – сделать пересадку костного мозга от сестры мальчика. Была надежда, что здоровые клетки костного мозга произведут иммунные клетки и восстановят функционирование иммунной системы ребенка. К сожалению, вместе с костным мозгом мальчику пересадили вирус Эпштейна – Барр. От этой распространенной и относительно безобидной для обычного человека инфекции мальчик погиб, так и не успев сформировать полноценную иммунную систему.
Сегодня заболевание Веттера успешно лечится с помощью генной терапии. Исследователи под руководством профессора Алена Фишера сначала провели испытания на мышах, а потом на людях, используя следующий подход: из костного мозга пациента берутся предшественники иммунных клеток, а затем с помощью вируса в эти клетки привносится исправная копия необходимого гена. После этого генетически модифицированные клетки возвращаются больному.
В 2000 году в журнале Science352 были опубликованы первые положительные результаты клинических испытаний на людях: генная терапия восстановила иммунную функцию нескольких пациентов. К сожалению, позже оказалось, что лечение давало серьезный побочный эффект. Использованный вирус (а это был ретровирус) может встраиваться в нежелательные участки генома и активировать работу генов, заставляющих клетки делиться, тем самым вызывая рак.
После обнаружения этой проблемы вирус отправили на доработку и устранили из него участок, который при встраивании в геном мог повысить активность работы соседствующих с местом вставки генов. В 2014 году в журнале The New England Journal of Medicine вышла статья о результатах применения нового вируса353. За пациентами, проходившими курс генной терапии, наблюдали от 16 до 43 месяцев: случаев рака зафиксировано не было. Это можно было бы объяснить простым везением, если бы не один важный факт. Было обнаружено, что раньше вставка вируса вблизи некоторых генов, участвующих в развитии рака, приводила к ускоренному делению клеток. Это и являлось предпосылкой для возникновения опухолей. У пациентов, которых лечили новым вирусом, такого эффекта не наблюдалось.
Здесь самое время рассказать сказку о “спящей красавице”. Так назвали участок ДНК, обнаруженный в геномах некоторых рыб, – особый транспозон, “скачущую” последовательность ДНК. Полноценные транспозоны кодируют белок (транспозазу), способный вырезать транспозон и копировать его в другие участки генома клетки. “Спящая красавица” в прямом смысле “спала”: из-за накопленных мутаций транспозаза перестала работать: вырезание и копирование транспозона прекратилось. Проанализировав последовательности транспозона из разных видов рыб, ученые смогли реконструировать эволюционную историю этого участка ДНК и предположить, как выглядела функциональная предковая последовательность354. После исправления всех накопленных мутаций с помощью генной инженерии “спящую красавицу” удалось пробудить. Транспозон встроили в геномы клеток рыб, мышей и даже изолированных клеток человека.
Там “спящая красавица" начала радостно “скакать" с хромосомы на хромосому, вызывая мутации.
“Зачем ученым воскрешать спящий транспозон?" – спросите вы. Представьте, что в результате очередного скачка “спящей красавицы" клетка начнет активно делиться. Молекулярные генетики могут прочитать последовательность ДНК рядом с местом вставки транспозона и понять, какой ген был затронут (ведь похожих на этот транспозон последовательностей ДНК в клетках млекопитающих нет). Место в геноме, где мы обнаружим “спящую красавицу", с высокой вероятностью окажется окрестностью гена, участвующего в регуляции клеточного деления. Этот подход позволил обнаружить массу генов, связанных с развитием рака355, но может быть использован и для изучения других функций генов.
Примером применения “спящей красавицы" является все та же генная терапия356. Терапевтический ген можно обрамить последовательностями ДНК, которые узнаются транспозазой, а полученную конструкцию вместе с геном транспозазы (лишенным обрамляющих последовательностей) поместить внутрь плазмиды. В клетке синтезируется транспозаза, которая перенесет терапевтический ген в геномную ДНК. Поскольку ген транспозазы при этом не перенесется, вставка не будет скакать в потомках полученных клеток, а значит, можно будет избежать лишних мутаций.
Генная терапия позволяет лечить не только наследственные заболевания, но и некоторые формы рака357. Здесь есть много разных подходов, один из которых технически очень похож на описанный выше метод лечения врожденного иммунодефицита. Раковые клетки – это измененные клетки, часто отличающиеся от обычных некоторыми молекулами на своей поверхности. Поэтому иммунная система в принципе могла бы распознать клетки опухоли и уничтожить их, однако иногда у клеток иммунной системы не находится правильного рецептора. В этом случае иммунного ответа на раковые клетки не возникает, и опухоль продолжает расти.
К счастью, можно найти гены, кодирующие рецепторы, специфически распознающие некоторые разновидности опухолей. У пациента можно взять его собственные клетки иммунной системы, внести в их геном ген недостающего рецептора с помощью вируса и тем самым обучить их бороться с опухолью. Затем клетки возвращаются обратно пациенту. Принципиальная возможность такой терапии была показана еще в 1999 году, когда были созданы генетически модифицированные лимфоциты, разрушающие отдельные клетки меланомы358. Несколько лет спустя эффективность этого подхода была подтверждена исследованиями на животных. При этом удавалось бороться не только с некоторыми опухолями, но и с вирусами, к которым тоже можно подбирать подходящие рецепторы.
Одно из преимуществ описанного метода лечения рака – его безопасность, особенно если сравнивать с химиотерапией или радиотерапией. В современных лабораториях можно создавать и тестировать разновидности рецепторов, не встречающихся в природе, обладающих исключительной избирательностью в том, с какими клетками им взаимодействовать. А значит, можно изобрести оружие против рака очень высокой точности. Еще одно преимущество – снижение вероятности повторного появления опухоли, ведь клетки иммунной системы никуда не денутся. Наоборот, в процессе борьбы с опухолью они размножатся и будут готовы отразить новую атаку в будущем. К тому же такие клетки способны уничтожать даже некоторых предшественников раковых клеток, которые могли остаться незамеченными и привести к повторному возникновению заболевания.
Ярким доказательством эффективности данной биотехнологии являются результаты клинических испытаний, опубликованные в 2013 году в журнале Science. С помощью генетически модифицированных клеток иммунной системы удалось вылечить пятерых пациентов с тяжелой формой лейкемии, которая не поддавалась лечению стандартными методами17. У всех безнадежных пациентов была достигнута ремиссия. Сейчас лечение рака с помощью этого метода продолжается в рамках клинических исследований, но я думаю, что скоро он вытеснит другие методы и станет доступен повсеместно.
Первый доведенный до практического применения способ лечения рака, основанный на генной терапии, был чуть менее впечатляющим. Лекарство гендицин, разработанное китайской биотехнологический компанией Shenzhen SiBiono GeneTech, представляет собой безопасный аденовирус, способный доставить в клетки пациента противоопухолевый ген p53, который часто испорчен в раковых клетках. При нормальном функционировании p53 заставляет потенциальные раковые клетки “кончать жизнь самоубийством”359. Поэтому и возникла идея, что, восстановив функции гена p53 в раковых клетках, можно избирательно прекратить их существование. Хотя в клинических испытаниях подхода были достигнуты определенные успехи360, остаются некоторые нерешенные проблемы. Например, непонятно, как сделать так, чтобы вирус успешно поразил все раковые клетки? Если мы убьем только часть раковой опухоли, это не решит проблему, а лишь отсрочит развитие болезни.
Перейдем к следующему примеру генной терапии. Одно из самых распространенных генетических заболеваний – дальтонизм, при котором люди не различают некоторые цвета, чаще всего красный и зеленый. Светочувствительной частью человеческого глаза является сетчатка, содержащая несколько миллионов колбочек и более ста миллионов палочек – клеток, реагирующих на свет. Палочки содержат белок родопсин – зрительный пигмент, отвечающий за сумеречное зрение, чувствительный к свету низкой интенсивности. Колбочки бывают трех типов с разными светочувствительными пигментами – фотопсинами, отвечающими за восприятие красного, зеленого и синего цвета в условиях более яркого освещения. Когда свет определенной длины волны попадает на зрительный пигмент, запускается каскад химических реакций, приводящий к тому, что светочувствительные клетки передают сигнал особым нечувствительным к свету клеткам сетчатки, а те передают сигнал дальше в мозг.
Красный и зеленый фотопсины расположены на Х-хромосоме. У мужчин Х-хромосома одна. Если на этой хромосоме ген одного из фотопсинов мутировал и один из двух белков не работает, то мужчина не сможет различать красный и зеленый цвета. У женщин Х-хромосомы две, поэтому у них есть запасная копия обоих генов, и они значительно реже страдают дальтонизмом.
Многие птицы, рептилии и рыбы – тетрахроматы, то есть имеют четыре типа колбочек с разными пигментами (синим, зеленым, красным и ультрафиолетовым). Большинство млекопитающих – дихроматы. Люди и некоторые родственные нам приматы – трихроматы. Оказывается, наши древние предки утратили два типа зрительных пигментов (синий и зеленый), а ультрафиолетовый пигмент в результате накопленных мутаций стал новым синим (на самом деле мы все еще могли бы видеть ультрафиолет, если бы не хрусталик глаза, непроницаемый для такого света). Потом наши более современные предки приобрели один дополнительный зрительный пигмент (новый зеленый)361, 362. Вот такая непростая эволюция!
Как возник наш зеленый зрительный пигмент? У наших сравнительно недавних предков произошло удвоение (дупликация) гена красного зрительного пигмента. Вместо одного гена появилось два. Когда происходит такое мутационное событие, у естественного отбора возникает замечательная возможность “поэкспериментировать” – гены начинают меняться быстрее обычного. Если раньше мутация, меняющая спектр поглощения красного зрительного пигмента, могла привести к нарушению зрения, то теперь, пока есть запасная копия гена, вторая может свободно мутировать. Если в ходе этого процесса организм научится различать больше цветов (и это будет полезно), мутации зафиксируются естественным отбором. Механизм эволюции путем дупликации генов достаточно распространен363. В случае с красным зрительным пигментом было экспериментально показано, что достаточно заменить в нем всего три аминокислоты, чтобы сделать его зеленым364.
Нередко шутят, что мужчина различает мало цветов – красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый, а женщины – куда больше: алый, кармин, гвоздика, пурпурный, тыквенный, персиковый, банановый, лимонный и так далее. Не исключено, что в такой шутке есть доля правды, имеющей молекулярно-генетические основания. Как мы уже установили, некоторые мутации в зрительных пигментах не нарушают их работу, но слегка меняют спектр их светочувствительности. Например, в европейской популяции есть два распространенных варианта красного зрительного пигмента. Примерно 60 % вариантов генов красного пигмента имеют аминокислоту серин на 180-й позиции белка, а 40 % – аланин, причем аланиновый вариант пигмента работает в чуть “более красном” (более длинноволновом) диапазоне365. У мужчины всегда будет либо один, либо другой вариант красного пигмента, а у женщины могут присутствовать оба. Есть основания полагать, что в редких случаях женщины с таким повышенным разнообразием зрительных пигментов могут различать больше оттенков366.
В 2009 году в журнале Nature были опубликованы результаты экспериментов по улучшению цветного зрения у обезьян саймири367. Дело в том, что у этих обезьян самки бывают трихроматами, а самцы почти всегда дальтоники. Двое самцов были обучены проходить тесты на умение различать цвета, но красный и зеленый цвета они различать так и не научились из-за врожденных особенностей зрения. В сетчатку обезьян ввели аденовирус, содержащий человеческий ген “красного” светочувствительного белка. Утверждается, что спустя 20 месяцев после терапии обезьянки не только расширили свой диапазон светочувствительности, но и приспособились к новым зрительным сигналам и стали трихроматами! Возможно, что и людям когда-нибудь удастся добавить еще один зрительный пигмент, чтобы мы различали больше оттенков и цветов. Например, можно попробовать подарить мужчинам альтернативный красный пигмент, чтобы они наконец научились отличать кармин, темно-бордовый, бургунди, сангрию и фалунский красный.
К сожалению, на данный момент клинические испытания по лечению дальтонизма не ведутся, а значит, еще рано говорить и о создании людей-тетрахроматов. Зато достигнут определенный прогресс в лечении ряда серьезных нарушений зрения, например амавроза Лебера. Это наследственное заболевание, при котором из-за дефектного гена погибают светочувствительные клетки сетчатки. Для того чтобы предотвратить прогрессирующую слепоту, пациентам вводят вирус, содержащий работающую копию гена, прямо в глаз, и это исправляет дефект368. Но что делать, если колбочки и палочки уже разрушены и восстановлению не подлежат?
Даже в этой ситуации остается надежда на частичное излечение.
У зеленых водорослей хламидомонад есть особый белок, называющийся каналородопсин. Обычные светочувствительные белки животных при активации светом запускают сложные каскады химических реакций. Каналородопсины действуют иначе – это особые каналы, расположенные в мембране клетки. На синем свету канал открывается и пропускает внутрь клетки ионы натрия. Эти ионы заряжены положительно и способны изменять потенциал клетки. Если бы речь шла не о клетке водоросли, а о нервной клетке, это бы привело к возникновению электрического сигнала и ее активации. Особые нейроны – ганглиозные клетки, расположенные в сетчатке, собирают сигналы от колбочек и палочек и передают их дальше в мозг. Оказалось, что если взять слепую крысу и ввести ей ген каналородопсина в ганглиозные клетки, то крыса обретает рудиментарное зрение369. Она начинает видеть не колбочками и палочками, а прямо ганглиозными клетками. Что именно ощущает при этом крыса, мы, конечно, не знаем, но она начинает успешно обходить препятствия.
Технология, позволяющая активировать нервные клетки светом, нашла применение в исследованиях нервной системы. Если встроить ген каналородопсина в нейроны мозга, то, воздействуя на отдельные нейроны светом, удается исследовать, к чему приводит их активация и как это влияет на поведение животных. Один из самых интересных экспериментов в этой области был опубликован в 2013 году в журнале Science исследовательской группой Сусуму Тонегавы. В ходе эксперимента ученые продемонстрировали, что с помощью света можно направленно изменять память мышей!370
С помощью генетических манипуляций Тонегава и его коллеги создали особых мышей, в активных нервных клетках которых синтезировался каналородопсин. Однако мышей постоянно кормили особым лекарством, подавляющим синтез каналородопсина, поэтому до начала эксперимента все нервные клетки мышей работали как обычно. Таких мышей сажали в одну из двух специальных комнат (условно: синяя или красная) и переставали давать им лекарство. Как следствие, активные нервные клетки начинали производить светочувствительный белок. Так ученым удалось избирательно пометить нервные клетки мыши, активно работающие во время нахождения в комнате. Потом мышей выпускали из комнат и с помощью вживленного в череп свето-волокна освещали область мозга, которая, как считается, отвечает за узнавание места. Одновременно с этим мышей били током.
Под действием света нервные клетки, которые были активны во время нахождения в синей или красной комнате, активировались снова – ведь именно в них успел выработаться светочувствительный белок! По мнению авторов эксперимента, это могло привести к тому, что мыши снова ощущали себя в одной из этих комнат. В итоге у животных возникала связь между ударом тока и ощущением нахождения в синей или красной комнате. К удивлению многих, эксперимент сработал: мыши начинали бояться комнаты, в которой их никогда током не били (другая комната выступала контролем). То есть ученым удалось создать у мышей ложное воспоминание. Данное исследование напоминает нам, что память – это не свойство “вечной души", а вполне материальная вещь, подверженная физическим и химическим факторам, и что ею можно управлять на уровне отдельных нервных клеток.
Каналородопсин находит все больше разнообразных применений, в том числе и в генной терапии. Я уже упоминал возможность оптической регуляции эрекции у грызунов, но давайте рассмотрим еще один пример. Недавно в журнале Nature Communications вышла статья о возможности лечения нервного паралича гортани. Ученые внедрили ген каналородопсина в клетки мускулатуры гортани мышей, после чего с помощью света удалось регулировать сокращения этой мускулатуры371. Из-за нервного паралича голосовых связок у людей возникают затруднения дыхания, так как голосовые связки могут перегораживать путь воздуха в трахею. В критических случаях пациенту приходится идти либо на хирургическое удаление голосовых связок, либо на трахеотомию, либо на электрическую стимуляцию мышц гортани, однако у всех этих подходов имеются очевидные побочные эффекты.
Выше мы обсуждали генетически обусловленную устойчивость к малярийному плазмодию и токсоплазме. Еще лучше изучена устойчивость людей к ВИЧ в результате мутации гена рецептора хемокинов CCR5. Хемокины – это сигнальные молекулы, которые выделяют одни клетки, чтобы привлечь к себе другие (у которых есть рецепторы хемокинов). Например, если где-то начинается инфекция, с помощью хемокинов привлекаются клетки иммунной системы. CCR5 – это белок, расположенный на поверхности иммунных клеток, необходимый для распознавания некоторых таких химических сигналов.
Как известно, ВИЧ инфицирует иммунные клетки человека. Перед проникновением в иммунную клетку он должен ее опознать, связавшись с определенными белками на ее поверхности, а CCR5 – как раз один из таких белков. Если в гене CCR5 присутствует относительно распространенная мутация, которая называется CCR5-дельта-32 (32 нуклеотида вырезаны из гена), то ВИЧ не может связаться с рецептором, и ему сложно проникнуть в клетку. Иммунные клетки с такой мутацией функционируют хуже, но защищены от ВИЧ, особенно если у человека испорчены обе копии гена372, 373.
В 2009 году в журнале New England Journal of Medicine вышла статья о том, что удалось вылечить пациента, болевшего сразу двумя смертельными заболеваниями – ВИЧ и лейкемией374. Для лечения лейкемии можно использовать химиотерапию, при которой избирательно погибают активно делящиеся клетки. Прежде всего речь идет о раковых клетках, но, к сожалению, вместе с ними погибают многие стволовые клетки костного мозга, дающие начало клеткам крови. Поэтому после агрессивной химиотерапии пациенту делают пересадку костного мозга от донора. В данном случае донором костного мозга специально выбрали носителя той самой мутации CCR5-дельта-32 на обеих хромосомах. Несколько лет спустя после многочисленных тестов было объявлено, что пациент вылечился и от лейкемии, и от ВИЧ: его новые иммунные клетки оказались устойчивы к вирусу375. К сожалению, такая терапия с пересадкой костного мозга очень опасна для здоровья (риск смертельного исхода исчисляется десятками процентов), поэтому едва ли она может стать распространенным медицинским подходом. Но на основе описанной устойчивости разработаны как лекарственные препараты, мешающие ВИЧ связаться с CCR5, так и генная терапия ВИЧ, которая сейчас проходит клинические испытания.
Суть генной терапии ВИЧ проста – у человека берутся его собственные иммунные клетки. В них с помощью генной инженерии вносятся мутации в гене CCR5, нарушающие его функцию, после чего клетки возвращаются пациенту. Немного рано говорить об эффективности данной терапии, но исследователи отмечают, что она приводит к значительному снижению числа частиц ВИЧ у большинства пациентов376. Кстати, один из способов направленного внесения мутаций в ген CCR5 иммунных клеток – доставка с помощью аденовирусов белка Cas9 и направляющей РНК. Этот метод генной инженерии мы подробно обсуждали в предыдущей главе.
Другой генно-инженерный подход к борьбе с ВИЧ тоже основан на использовании белка Casy. Идея заключается в том, чтобы создать у клеток человека настоящий бактериальный иммунитет. С ВИЧ сложно бороться, так как он, будучи ретровирусом, встраивает свой геном в хромосомы человеческих клеток. В 2013 году группа японских ученых показала, что с помощью CRISPR/Casy-системы можно вырезать ВИЧ, встроенный в геном клеток человека377. Опыты проводились не на пациентах, а на отдельных клетках, но скоро могут начаться клинические испытания и на людях, и, вполне вероятно, лекарство от ВИЧ наконец будет найдено. Отдельно стоит отметить, что недавно ученые научились использовать Casy, чтобы разрезать не только ДНК, но и РНК378. Это открывает новые (и более безопасные) терапевтические возможности для направленной борьбы с вирусами.
Врожденная мышечная дистрофия – еще одно наследственное заболевание, которое пытаются лечить с помощью генной терапии379. К сожалению, в данном случае эффективного лекарства пока не найдено. Тем не менее ученым удалось создать генетически модифицированных мышей, обладающих существенно увеличенной мышечной массой и физической выносливостью, почти как герой мультфильма “Супермышь” (Mighty Mouse) 380. Можно ожидать, что в будущем мы сможем не только научиться лечить мышечную дистрофию, но и делать людей сильнее и выносливее.
Пока что генная терапия находится еще в самом начале своего развития, но в скором времени у нас будет арсенал безопасных вирусов, нацеленных на все ткани и органы человека, технологии дешевого производства этих вирусов и надежные генетические конструкции для исправления любых наследственных заболеваний. В компьютерной игре “Биошок” были “плазмиды", которые персонаж мог вколоть себе в кровь, чтобы приобрести сверхспособности. Ничего сверхъестественного генная терапия не обещает, но с ее помощью возможно усовершенствовать многие физиологические функции человека. Сделать мышцы крепче, поправить зрение, избавиться от лишнего веса, улучшить метаболизм и даже продлить молодость – все это легко представить в не столь отдаленном будущем.