Обманщики
Кроме родственного отбора существуют и другие механизмы и факторы, помогающие или, наоборот, препятствующие эволюции альтруизма. Главной помехой является проблема так называемых "обманщиков", проблема социального паразитизма.
Вспомним, например, социальную жизнь бактерии Pseudomonas fluorescens, о которой говорилось в книге "Рождение сложности". Эта бактерия — удобный объект для изучения эволюции в пробирке.
В жидкой среде бактерии Pseudomonas развиваются сначала как одиночные клетки и постепенно занимают всю толщу бульона. Когда в среде становится мало кислорода, получают преимущество бактерии-мутанты, которые выделяют вещества, способствующие склеиванию клеток. Такие бактерии после деления не могут "отклеиться" друг от друга. Фокус тут в том. что одиночные клетки плавают в толще бульона, а склеившиеся всплывают на поверхность, где кислорода гораздо больше, Производство клея — дело дорогостоящее, однако общая награда (кислород) с лихвой покрывает расходы.
Возникновение таких колоний — само по себе большое достижение. Но до настоящей социальности, а тем более до настоящего многоклеточного организма тут еще очень далеко. Эти колонии недолговечны, потому что естественный отбор в такой колонии благоприятствует размножению клеток-"обманщиков", то есть мутантов, которые перестают производить клей, однако продолжают пользоваться преимуществами жизни в группе. В этой системе нет никаких механизмов, которые препятствовали бы такому жульничеству. Безнаказанность ведет к быстрому размножению обманщиков, и колония разрушается. Дальнейшее развитие кооперации в такой системе оказывается невозможным из-за социального паразитизма.
В этом и состоит главное препятствие на пути эволюции кооперации и альтруизма. Таково общее правило: как только начинает зарождаться кооперация, тут же появляются всевозможные обманщики, нахлебники и паразиты, которые могут лишить кооперацию всякого смысла.
Чтобы социальная система могла развиваться дальше, ей необходимо выработать механизм борьбы с обманщиками. Иногда такие механизмы действительно вырабатываются. Часто это приводит к эволюционной "гонке вооружений": обманщики совершенствуют способы обмана, а кооператоры совершенствуют способы борьбы с обманщиками.
Вот еще один пример из жизни микробов. Для бактерий Myxococcus xanthus характерно сложное коллективное поведение. Например, иногда они устраивают коллективную "охоту" на других микробов. Охотники выделяют токсины, убивающие "добычу", а затем всасывают органические вещества, высвободившиеся при распаде погибших клеток.
При недостатке пищи миксококки образуют плодовые тела, в которых часть бактерий превращается в споры. В виде спор микробы могут пережить голодные времена. Плодовое тело формируется путем самосборки за счет согласованного поведения множества индивидуальных бактерий. При этом лишь часть бактерий получает прямую выгоду, а остальные жертвуют собой ради общего блага. Дело в том, что не все участники коллективного действа могут превратиться в споры и передать свои гены следующим поколениям. Многие особи выступают в роли "стройматериала", обреченного умереть, не оставив потомства.
Как мы уже знаем, где альтруизм, там и паразиты-обманщики. Среди миксококков обманщики тоже есть: это генетические линии (штаммы) миксококков, не способные к образованию плодовых тел, но умеющие пристраиваться к чужим плодовым телам и образовывать там свои споры.
Были проведены интересные эксперименты со смешанными культурами бактерий-альтруистов и бактерий-эгоистов. Такие культуры медленно, но верно деградируют, потому что доля паразитов неуклонно растет и в конце концов альтруистов остается слишком мало, чтобы обеспечить себя и других плодовыми телами. Но оказалось, что у миксококков в результате случайных мутаций может развиваться устойчивость к нахлебникам, то есть способность не позволять им занимать выгодные позиции в плодовом теле. Причем иногда для появления такой устойчивости достаточно одной-единственной мутации (Fiegna et al., 2006).
Проблема обманщиков хорошо знакома и более сложным одноклеточным организмам, таким как социальные амебы Dictyostelium. Как и некоторые общественные бактерии, эти амебы при недостатке пищи собираются в большие многоклеточные агрегаты (псевдоплазмодии), из которых затем образуются плодовые тела. Те амебы, чьи клетки идут на построение ножки плодового тела, жертвуют собой ради товарищей, которые получают шанс превратиться в споры и продолжить род.
Как и общественные бактерии, амебы страдают от социального паразитизма. У них тоже встречаются штаммы обманщиков и нахлебников. Эксперименты показали, что вероятность развития устойчивости к обманщикам в результате случайных мутаций у диктиостелиума тоже довольно высока, как и у миксококков (Khare et al., 2009).
В природе идет постоянная борьба между альтруистами и обманщиками. Поэтому геномы таких организмов "настроены" естественным отбором так, что случайные мутации с большой вероятностью могут приводить к появлению защиты от той или иной разновидности обманщиков. Скорее всего, у них есть специализированные молекулярные системы "обмана" (помогающие проникать в чужие плодовые тела, не строя своих) и системы "защиты от обмана" (позволяющие опознать обманщика и не пустить его в плодовое тело). Между этими системами идет эволюционная гонка вооружений. Когда у какой-то амебы возникает полезная мутация в системе обмана, такая амеба дает начало новому штамму эффективных обманщиков. Когда у другой амебы возникнет полезная мутация в системе защиты, она даст начало штамму, защищенному от новых обманщиков. И так далее. Это очень похоже на нескончаемую гонку вооружений, идущую между патогенными микробами и генами иммунной защиты.
Жизненный цикл и социальный паразитизм у Dictyostelium. Темным и светлым обозначены два штамма (разновидности) амеб — "обманщики" и "честные". а — при избытке пищи амебы живут поодиночке, растут и размножаются бесполым путем (делением); половое размножение у них тоже иногда происходит, но на схеме оно не показано, б-в — при недостатке пищи амебы собираются в большие скопления, г — в результате образуются многоклеточные агрегаты длиной в несколько миллиметров, которые могут некоторое время ползать на манер слизней; их так и называют — slugs, д-ж — в конце концов многоклеточный агрегат превращается в "плодовое тело" на ножке; при этом около 20 % клеток жертвуют собой, образуя ножку, а 80 % превращаются в споры и получают шанс продолжить свой род. Видно, что темные клетки ("обманщики") захватили почти все лучшие места в плодовом теле и превратились в споры, предоставив всю неблагодарную работу по созданию ножки светлым клеткам ("честным"). По рисунку из Kessin, 2000.
Создается впечатление, что эволюция неоднократно "пыталась" создать из социальных бактерий или простейших, умеющих собираться в плотные скопления, многоклеточный организм, но дело почему-то не пошло дальше плазмодиев и довольно просто устроенных плодовых тел. Все по-настоящему сложные многоклеточные организмы формируются иным путем — не из множества индивидуальных клеток со своими особенными геномами, а из потомков одной-единственной клетки. Это гарантирует генетическую идентичность всех клеток организма. Величина R становится равной единице, что создает идеальные условия для родственного отбора.
Некоторые социальные системы, основанные на альтруизме и при этом вроде бы не защищенные от социальных паразитов, ухитряются выживать за счет разных маленьких хитростей. Недостойных, прямо скажем, высокого звания альтруиста.
Например, в популяциях дрожжей одни особи ведут себя как альтруисты: они производят фермент инвертазу, расщепляющий сахарозу на легко усваиваемые моносахариды — глюкозу и фруктозу. Дрожжи могут поглощать и нерасщепленную сахарозу, но моносахариды усваиваются ими легче (то есть используются более эффективно). Некоторые дрожжевые клетки, однако, не производят инвертазу, хотя с удовольствием поедают глюкозу, добытую чужими трудами. Ведь инвертаза расщепляет сахарозу не внутри клетки, а снаружи, поэтому получившиеся моносахариды становятся доступны не только той клетке, которая произвела фермент, но и всем окружающим.
Теоретически это должно было бы приводить к полному вытеснению альтруистов эгоистами. Но в реальности численность альтруистов не падает ниже определенного уровня. Дело в том, что альтруизм дрожжей при ближайшем рассмотрении оказался не совсем бескорыстным: дрожжи-альтруисты помогают всем окружающим, но 1 % произведенной ими глюкозы они все-таки берут себе сразу, в обход общего котла. За счет этого однопроцентного выигрыша они, как выяснилось, могут мирно сосуществовать с эгоистами. Когда численность "эгоистов" достигает определенного (достаточно высокого) уровня, количество доступной глюкозы в популяции снижается настолько, что быть "альтруистом" становится просто-напросто выгоднее, чем эгоистом. Альтруисты начинают размножаться чуть быстрее эгоистов, и их количественное соотношение стабилизируется. Начинает работать так называемый частотно-зависимый отбор (он действует, когда приспособленность генотипа — в данном случае генотипа "альтруистов" — растет по мере снижения его частоты: ген выгоден, пока редок).
Дрожжи в последние годы стали излюбленным объектом ученых, занимающихся поведением социальных систем (на рисунке видны круглые шрамы, остающиеся на месте отпочковавшихся дочерних клеток).
Но если альтруизм выгоднее эгоизма, то это уже как будто и не совсем альтруизм. Да и можно ли на таких мелких хитростях вроде жевания печенья под подушкой построить серьезную, сложную кооперативную систему?
Обманщики могут быть полезны для общества?
До недавних пор считалось, что положение, складывающееся в смешанной популяции дрожжей-альтруистов (производящих фермент инвертазу) и дрожжей-эгоистов (которые фермента не производят и живут на готовеньком) соответствует классической ситуации из теории игр, которая называется "игра в сугроб". Лишь в 2010 году выяснилось, что дрожжи на самом деле "в сугроб" не играют. Все оказалось сложнее и интереснее (Maclean et al., 2010).
В классической "игре в сугроб" условия такие. Два игрока должны решить общую проблему (например, расчистить снежный завал на дороге или расщепить сахарозу). Если она будет решена, оба получат выигрыш b (смогут ехать дальше или получат порцию глюкозы). Чтобы проблему решить, необходимо заплатить некую цену с (например, поработать лопатой или потратить энергию на производство инвертазы).
Если кооператор играет против другого кооператора, они решают проблему сообща и для каждого из них итоговый выигрыш будет равен b — с/2. Если кооператор играет против обманщика, то кооператор делает один всю работу и в итоге получает b-с, а обманщику выигрыш b достается даром. Два обманщика, играя друг против друга, ничего не делают и оба остаются с носом.
Предположение о том, что дрожжи "играют в сугроб", позволило объяснить, почему в популяциях дрожжей обманщики не вытесняют кооператоров. Когда кооператоров остается слишком мало, обманщикам все чаще приходится играть друг против друга, и в итоге их стратегия становится (в среднем) менее выгодной, чем стратегия кооператоров.
Однако из модели "игры в сугроб" вытекает проверяемое следствие, которое, как выяснилось, не подтверждается фактами. Состоит оно в следующем. Если дрожжи действительно "играют в сугроб", то максимальный общий выигрыш (для всей популяции "игроков" в целом) должен достигаться при полном отсутствии обманщиков в коллективе. В модели "игры в сугроб", как и в большинстве других классических моделей социальных систем, кооператоры всегда приносят коллективу только пользу, а обманщики — один сплошной вред. Иными словами, если дрожжи "играют в сугроб", то популяции дрожжей, сплошь состоящие из кооператоров, должны всегда расти быстрее, чем популяции, в которых есть обманщики.
Крейг Маклин из Оксфордского университета и его коллеги решили это проверить и получили парадоксальный результат. Оказалось, что некоторая примесь обманщиков не только не вредит популяции, но и идет ей на пользу! Иными словами, в среде, где единственным источником пищи является сахароза, смешанные популяции дрожжей растут быстрее и используют ресурс эффективнее (то есть производят больше новых дрожжевых клеток на единицу съеденной сахарозы), чем популяции, состоящие из одних кооператоров.
Этот результат противоречит не только модели "игры в сугроб", но и всем общепринятым представлениям о динамике социальных систем. На первый взгляд может показаться вообще невероятным, что наличие обманщиков и эгоистов, которые не производят общественно-полезного продукта, а только пользуются плодами чужих трудов, может идти на пользу коллективу. Хотя, с другой стороны, подобные ситуации были описаны и раньше (например, скорость роста колонии бактерий в присутствии антибиотика может оказаться максимальной, когда не все, а только часть бактерий вырабатывает вещество, обезвреживающее антибиотик).
Чтобы разобраться в причинах парадокса, авторы разработали сложную математическую модель, призванную максимально точно отобразить все процессы и взаимодействия в исследуемых дрожжевых культурах. В модели были учтены все известные факты о биохимии, физиологии, поведении и жизненном цикле дрожжей, которые могут иметь отношение к делу. Поскольку дрожжи — классический лабораторный объект, таких фактов набралось немало. Итоговая модель представляет собой систему из 13 дифференциальных уравнений, одного взгляда на которую достаточно, чтобы повергнуть в трепет почти любого биолога, включая автора этих строк. В качестве параметров в модель были подставлены реальные цифры, полученные в ходе изучения подопытных штаммов дрожжей. Затем авторы вывели из своей модели ряд следствий, которые можно было проверить экспериментально, и все они благополучно подтвердились.
В частности, модель предсказывала и тот самый парадокс, ради которого все было затеяно: модельная популяция росла на сахарозе лучше всего, если в ней помимо кооператоров были также и обманщики. Данное свойство не было заложено в модель преднамеренно, оно получилось "само" из совокупности всех известных фактов о биологии дрожжей, представленных в виде формул.
Модель также предсказывала, что относительная приспособленность кооператоров (то есть эффективность их размножения по сравнению с эффективностью размножения обманщиков) должна снижаться по мере роста доли кооператоров в смешанной культуре. Иными словами, чем кооператоров больше, тем менее выгодно быть кооператором. Это предсказание было проверено экспериментально и тоже подтвердилось, причем с высокой точностью.
Все это позволило авторам заключить, что модель адекватно отображает реальную ситуацию и поэтому ее можно использовать для выявления причин наблюдаемого парадокса. Анализ модели показал, что парадокс проявляется при одновременном выполнении СЛЕДУЮЩИХ ТРЕХ УСЛОВИЙ.
ВО-ПЕРВЫХ, эффективность использования ресурса (в данном случае глюкозы, которая наряду с фруктозой образуется при расщеплении сахарозы ферментом инвертазой) должна снижаться по мере роста его концентрации. Иными словами, в голодные времена пища должна использоваться дрожжами более эффективно (с большим выходом биомассы на единицу съеденной глюкозы), чем в периоды изобилия. Если убрать данную зависимость из модели и сделать так, чтобы эффективность использования пищи была одинаковой при любом ее количестве, парадокс исчезает и модельные популяции, как и положено, начинают расти лучше всего при полном отсутствии обманщиков. Эксперименты подтвердили, что эффективность использования глюкозы у дрожжей действительно снижается с ростом концентрации глюкозы. Это, между прочим, означает, что величина b, то есть выигрыш, получаемый дрожжами от каждой условной единицы произведенной глюкозы, не является постоянной, как должно быть в классической "игре в сугроб", а меняется в зависимости от условий (в данном случае — от концентрации глюкозы). В результате, если в культуре очень много кооператоров, они выделяют большое количество инвертазы и производят много глюкозы сразу — так много, что эффективность использования этого ценного ресурса снижается. В условиях глюкозного изобилия дрожжи растут быстро, но неэффективно, то есть на каждый грамм съеденной глюкозы в итоге производится меньше дрожжевой биомассы, чем при более скудном рационе. Если же "разбавить" культуру кооператоров некоторым количеством обманщиков, сахароза будет переводиться в глюкозу более постепенно и в целом ресурс будет расходоваться бережнее.
ВТОРОЕ НЕОБХОДИМОЕ УСЛОВИЕ состоит В ТОМ, ЧТО смешанная культура должна иметь некую пространственную структуру, то есть не быть абсолютно гомогенной. В одних областях пространства должно быть чуть больше кооператоров, в других — чуть больше обманщиков. В противном случае все ресурсы в культуре будут распределяться абсолютно поровну между всеми клетками. Модель предсказывает, что в этой ситуации тоже следует ожидать "классического" результата: максимальный групповой выигрыш будет наблюдаться при отсутствии обманщиков. Это предсказание удалось подтвердить экспериментально: если смешанные культуры очень тщательно перемешивать, парадокс исчезает, и самый быстрый рост наблюдается в культурах, на 100 % состоящих из кооператоров.
ТРЕТЬЕ НЕОБХОДИМОЕ УСЛОВИЕ состоит В ТОМ, ЧТО клетки не должны обладать способностью точно регулировать производство инвертазы в зависимости от наличия сахарозы в среде. В реальности дрожжи действительно производят инвертазу без оглядки на то, имеется ли в среде сахароза. Они начинают ее производить особенно интенсивно, когда им не хватает глюкозы, и делают это, даже если сахароза в среде отсутствует и от инвертазы нет никакого проку. В экспериментах дрожжи-кооператоры усиленно производили инвертазу еще долго после того, как вся сахароза была расщеплена на моносахариды. В терминах "игры в сугроб" это означает, что они продолжали разгребать снег лопатами, хотя путь уже давно был расчищен. Если в модели дать возможность дрожжам прекращать производство инвертазы, когда вся сахароза кончилась, парадокс немедленно исчезает. По-видимому, дрожжи просто не в состоянии точно определить, сколько в среде сахарозы. У них, правда, есть один рецепторный белок, реагирующий на сахарозу, но этот рецептор, к несчастью, реагирует и на глюкозу тоже. Возможно, дрожжи, как и мы, не могут определить "на вкус" концентрацию именно сахарозы, а просто чувствуют, что сладенько.
Получается, что причины наблюдаемого парадокса в конечном счете сводятся к тому, что методы кооперации, практикуемые кооператорами", довольно неэффективны и негибки.
Авторы предполагают, что все три условия вполне могут выполняться и в других социальных системах. Например, первое условие нам хорошо знакомо (в голодные времена пищу берегут и ею не кидаются), второе характерно для многих природных популяций (например, популяция может подразделяться на семейные группы, члены которых сходны друг с другом в среднем больше, чем с членами других групп). Третье условие с неизбежностью следует просто из того факта, что живые организмы далеко не всегда располагают всей необходимой информацией для оптимальной настройки своего поведения. Поэтому вполне возможно, что некоторая доля обманщиков может идти на пользу не только дрожжам.
Однако нельзя забывать, что речь сейчас идет только о пользе для группы, а не для индивида. Причем польза для группы понимается исключительно как скорость роста этой группы (или средняя скорость размножения входящих в ее состав особей). Ясно, что для людей такое определение "пользы" далеко не всегда является адекватным.
Естественному отбору, как правило, нет дела до пользы для группы Если предоставить смешанные культуры дрожжей самим себе, то под действием отбора в них установится вовсе не то соотношение кооператоров и обманщиков, при котором скорость роста группы максимальна. Ничего подобного. Установится такое соотношение, при котором "приспособленности" (скорости размножения) обманщиков и кооператоров будут равными. Или, что то же самое, относительная приспособленность тех и других будет равна единице. Это равновесное соотношение, к которому неизбежно приходит смешанная культура дрожжей под действием отбора, не совпадает с оптимальным для группы. В этом как раз и проявляется безразличие естественного отбора к нуждам коллектива.