Седьмая глава
В Зазеркалье
Несмотря на то что многообразия Калаби-Яу произвели в физике подлинный взрыв, этот взрыв чуть было не обратился во всхлип, причем по причинам, совершенно не связанным с затруднениями, вызванными избыточной плодовитостью теории струн в виде множества теорий, которые впоследствии были объединены Эдвардом Виттеном. Привлекательность этих геометрических форм была очевидной. Ронен Плессер из Университета Дьюка так описал планы по работе над ними: «Мы надеялись, что сможем классифицировать эти пространства, определимся с типом физики, который они порождают, исключим некоторые из них из рассмотрения — и на основании этого сделаем вывод, что нашу Вселенную можно описать, например, пространством номер 476, и получим из этого все, что бы мы хотели узнать».
На сегодняшний день этот простой план все еще находится на стадии реализации. Прогресс застопорился еще двадцать лет назад; тогда же иссяк энтузиазм ученых, и поползли неизбежные сомнения. В конце 1980-х годов многие физики считали, что попытка использования многообразий Калаби-Яу в физике потерпела поражение. Например, физик Пол Эспинволл, на данный момент работающий в Университете Дьюка, вскоре после защиты диссертации в Оксфорде обнаружил, что найти работу и получить гранты для исследования многообразий Калаби-Яу и теории струн стало весьма непросто. Разочаровавшиеся в теории студенты, в том числе и два бывших однокурсника и соавтора Брайана Грина из Оксфордского университета, начали покидать физику ради того, чтобы стать финансистами. Те, кто остался, подобно Грину, были вынуждены отбиваться от обвинений в желании «заниматься вычислениями ради вычислений — математикой под видом физики».
Возможно, это и правда. Но, учитывая, что Грин и Плессер вскорости внесли важнейший вклад в область зеркальной симметрии, который дал вторую жизнь сонному царству многообразий Калаби-Яу и восстановил в правах подзабытую на то время область геометрии, я должен выразить им свою огромную признательность за то, что они предпочли продолжение исследований торговле ценными бумагами. Однако перед тем, как наступил этот подъем, доверие к многообразиям упало до такого минимума, что, по крайней мере, некоторое время казалось, будто их история закончилась.
Первые тревожные признаки появились, когда теория струн в своем развитии натолкнулась на понятие конформной инвариантности. Струна, движущаяся через пространство-время, заметает поверхность с двумя вещественными измерениями (одним пространственным и одним временным) и одним комплексным — так называемый мировой лист. Если струна имеет форму петли, то мировой лист представляет собой вытянутую многомерную трубку, или, точнее, комплексную риманову поверхность без границы; в случае же незамкнутой струны в роли мирового листа будет выступать бесконечная лента — комплексная риманова поверхность, имеющая границу. В струнной теории мы исследуем все возможные колебания струн, которые определяются физическим принципом — принципом наименьшего действия, зависящим от конформной структуры мирового листа — внутреннего свойства римановых поверхностей. Таким образом, конформная инвариантность изначально встроена в теорию струн. Кроме того, теория струн обладает масштабной инвариантностью, а это означает, что умножение расстояний на произвольную постоянную не изменяет отношений между точками. Итак, можно изменять поверхность — накачивать ее воздухом подобно воздушному шару или сжимать ее, выпуская накачанный воздух, растягивать ее любыми другими путями, меняя форму или расстояние между точками, — не затрагивая при этом чего-либо существенного с точки зрения теории струн.
Проблемы возникают, когда требование конформной инвариантности выдвигается в рамках квантовых представлений. Подобно тому как классическая частица движется по геодезической линии — траектории, соответствующей минимальному четырехмерному пространственно-временному расстоянию между двумя точками, как предсказывает принцип наименьшего действия, о котором шла речь в третьей главе, классическая струна также движется по траектории, длина которой минимальна. В результате этого мировой лист, образованный движущейся струной, представляет собой минимальную поверхность особого типа. Поверхность такого двухмерного мирового листа можно описать при помощи системы уравнений — двухмерной теории поля, которая точно предсказывает возможные пути перемещения струны. В теории поля все силы описываются при помощи полей, пронизывающих пространство-время. Движение струны и ее поведение в целом определяется силами, которые на нее действуют, и струна перемещается таким образом, чтобы поверхность соответствующего мирового листа была минимальной. Среди огромного количества возможных мировых листов, соответствующих множеству возможных путей перемещения струны, теория поля отбирает именно тот, площадь которого минимальна.
Квантовая интерпретация данной теории поля учитывает не только наиболее существенные особенности движения струны в пространстве-времени и поверхности, заметаемой данной струной, но также и некоторые более мелкие детали, обусловленные колебаниями струны в процессе движения. В результате мировой лист будет иметь небольшие особенности, отражающие эти колебания. В квантовой механике частица или струна, движущаяся в пространстве-времени, движется одновременно по всем возможным траекториям. Вместо того чтобы просто выбрать один мировой лист, обладающий минимальной поверхностью, квантовая теория поля рассматривает средневзвешенное значение всех возможных конфигураций мирового листа, и большое значение в ее уравнениях отведено поверхности с меньшей площадью.
Вопрос состоит в том, будет ли теория двухмерного квантового поля после усреднения, проведенного путем интегрирования по всем возможным геометриям мирового листа, по-прежнему удовлетворять условию масштабной инвариантности и другим аспектам конформности? Ответ на этот вопрос зависит от метрики пространства, в котором находится мировой лист; для одних метрик теория поля является конформной, для других — нет.
Для того чтобы определить, поддерживается или нет масштабная инвариантость конкретной метрикой, рассчитывается так называемая бета-функция, определяющая отклонение теории от конформности. Если значение бета-функции равно нулю, то при деформации мирового листа — раздувании, растяжении или сжатии — ничего не изменяется, что говорит о конформности теории. Бета-функция автоматически обращается в нуль в случае риччи-плоской метрики подобной той, которой обладают пространства Калаби-Яу. К сожалению, как и в случае многих обсуждавшихся ранее сложных уравнений, решение уравнения для бета-функции в явном виде найти невозможно. Вместо этого было найдено приближенное решение путем аппроксимации искомой функции суммой бесконечного числа слагаемых — так называемым степенным рядом. Считается, что чем больше членов ряда задействовано в аппроксимации, тем она лучше.
Чтобы лучше понять, как это работает, представьте, что вы хотите измерить площадь поверхности сферы, заворачивая ее в проволочную сетку. Если проволока состоит только из одной петли, то, натянув ее на сферу, вы едва ли получите хорошую оценку для площади. Однако если взять не одну, а четыре треугольные петли, соединенные в форме тетраэдра, охватывающего сферу, аппроксимация будет гораздо лучше. Увеличение числа петель до двенадцати — в форме пятиугольников, соединенных в додекаэдр, или до двадцати — в форме треугольников, соединенных в икосаэдр, даст еще более точные оценки. Как и в нашем примере, слагаемые степенного ряда бета-функции также носят название петель. Взяв только первое слагаемое ряда, вы получите однопетлевую бета-функцию, взяв первые два — двухпетлевую и т. д.
Добавление новых петель к проволочной сетке приводит к следующей проблеме: расчеты бета-функции, которые и без того чрезвычайно сложны, при возрастании числа петель становятся еще сложнее, и объем вычислений многократно возрастает. Расчеты показали, что первые три слагаемых степенного ряда, как и было предсказано ранее, равны нулю — что весьма обнадежило физиков. Однако в статье 1986 года Маркус Грисару, физик, в настоящее время работающий в Университете Макгилла, и двое его коллег, Антон ван де Вен и Даниэла Занон, обнаружили, что четырехпетлевая бета-функция в нуль не обращается. Последовавший за этим расчет, выполненный Грисару и его коллегами, показал, что пятипетлевая бета-функция тоже не равна нулю. Это открытие стало заметным ударом по позициям, занимаемым в физике многообразиями Калаби-Яу, поскольку из него следовало, что метрика данных многообразий не приводит к сохранению конформной инвариантности.
«У меня, как у сторонника теории струн и суперсимметрии, наши результаты вызвали некоторое беспокойство, — говорит Грисару. — Мы, конечно, были счастливы, что эти результаты в некоторой степени прославили нас, но слава разрушителя прекрасного здания — это далеко не то, чего можно желать каждому. Впрочем, мое мнение о науке заключается в том, что нужно смириться с теми результатами, которые ты получил».
Однако не все еще было потеряно. В статье, выпущенной в 1986 году Дэвидом Гроссом и Виттеном, работавшими тогда в Принстоне, было показано, что, несмотря на то что для риччи-плоской метрики многообразий Калаби-Яу конформная инвариантность действительно не соблюдается, эту метрику можно слегка изменить так, чтобы бета-функция, как и требовалось, обратилась в нуль. Подобная «настройка» метрики проводится не за один, а за бесконечное число корректировок, или квантовых поправок. Но в подобных случаях, когда поправки представляют собой бесконечный ряд, неминуемо возникает вопрос: сойдется ли этот ряд в конце концов к искомому решению? «Может ли выйти так, что, сведя воедино все поправки, никакого решения вы не получите?» — задается вопросом Плессер.
В лучшем случае небольшое изменение метрики приведет к незначительному изменению решения. К примеру, нам известно, как решать уравнение 2x=0, его ответом является x=0. «Если теперь я захочу решить уравнение 2x=-0,1, то обнаружу, что ответ изменился весьма несущественно (x=-0,05), — что является для меня оптимальным вариантом», — поясняет Плессер. Уравнение x2=0 также не вызывает особых затруднений (вновь x=0). «Но если я попытаюсь решить уравнение x2=-0,1, то обнаружу, что оно попросту не имеет решения, по крайней мере, в действительных числах, — говорит он. — Итак, вы видите, что небольшое изменение параметров может привести как к тому, что решение лишь немного изменится, так и к тому, что оно вообще исчезнет [например, для вещественных чисел]».
Как было установлено Гроссом и Виттеном, для исправленного многообразия Калаби-Яу последовательный ряд поправок сходится. Они показали, что, если почленно исправлять метрику Калаби-Яу, в результате возникнет сложнейшее уравнение, которое тем не менее можно решить. При этом все петли бета-функции устремятся к нулю.
После этого, по словам Шамита Качру из Стэнфорда, «вопрос о том, чтобы полностью отбросить многообразия Калаби-Яу, уже не стоял; теперь достаточно было только слегка их модифицировать. И, поскольку изначально не существовало возможности записать метрику Калаби-Яу, необходимость ее небольшого преобразования не стала чем-то особо удручающим».
Дальнейшее развитие идей о способах преобразования метрики Калаби-Яу основано на появившейся в том же году работе Денниса Немесчанского и Ашока Сена, в то время работавших в Стэнфорде. Полученное в результате исправления многообразие топологически оставалось многообразием Калаби-Яу, а его метрика — почти риччи-плоской, хотя и не совсем. Немесчанский и Сен вывели точную формулу, показывающую степень отклонения модифицированной метрики от риччи-плоского случая. Их работа, совместно с работой Гросса и Виттена, «помогла сохранить многообразия Калаби-Яу для физики, поскольку без них пришлось бы прекратить исследования в целой области», — утверждает Сен. Более того, по словам Сена, без первого допущения о том, что многообразия Калаби-Яу, фигурирующие в теории струн, являются риччи-плоскими, добраться до окончательного решения было бы невозможно. «Если бы мы начали с метрики, не являющейся риччи-плоской, сложно даже представить, при помощи каких методик мы получили бы исправленный вариант».
Я полностью согласен с Сеном, хотя и не считаю, что допущение о риччи-плоской метрике многообразий Калаби-Яу после этого стало бесполезным. Можно рассматривать многообразие Калаби-Яу с риччи-плоской метрикой как решение уравнения x2=2. При этом уравнение, которое нужно решить, — это x2=2,0000000001, поскольку, как уже было сказано, искомое многообразие является почти, но не точно риччи-плоским. Для того чтобы получить модифицированную метрику, существует только один способ — начать с решения уравнения x2=2 и уже от него двигаться в требуемом направлении. При этом в большинстве случаев решение уравнения x2=2 служит весьма хорошим приближением. Кроме того, риччи-плоская метрика, как правило, является простейшей для использования и охватывает подавляющее большинство явлений, интересующих ученых.
Следующие существенные шаги в вопросе восстановления в правах многообразий Калаби-Яу были сделаны Дороном Гепнером, в то время постдоком в Принстоне, на протяжении нескольких лет, начиная с 1986 года. Гепнер разработал несколько конформных теорий поля, каждая из которых в рамках соответствующих физических понятий обладала потрясающим сходством с описаниями отдельных многообразий Калаби-Яу определенного размера и формы. Изначально Гепнер обнаружил, что физика, относящаяся к его теории поля, — включая определенные симметрии, поля и частицы, — имеет тот же вид, что и физика струны, движущейся в определенном многообразии Калаби-Яу. Это привлекло его внимание, поскольку связь между двумя столь, казалось бы, несвязанными вещами, как конформная теория поля и многообразия Калаби-Яу, казалась поистине сверхъестественной.
Одним из тех, кто проявил чрезвычайный интерес к этой новости, стал Брайан Грин — в то время мой гарвардский постдок, специалист в области математических обоснований многообразий Калаби-Яу, закончивший докторскую диссертацию по этому предмету и, кроме того, имевший солидную подготовку в области конформной теории поля. Он тут же связался с учеными с физического факультета, также работавшими в области конформных теорий, в том числе с двумя аспирантами — Роненом Плессером и Жаком Дистлером. Дистлер и Грин начали совместное исследование корреляционных функций, связанныхс конформной теорией поля и соответствующим многообразием Калаби-Яу. Корреляционные функции в этом случае включали в себя так называемые «взаимодействия Юкавы», определяющие взаимодействия частиц между собой, в том числе и такие взаимодействия, которые наделяли частицу массой. В статье, представленной весной 1988 года, Дистлер и Грин объявили, что корреляционные функции — или взаимодействия Юкавы — для конформной теории поля и соответствующих многообразий Калаби-Яу численно совпадают, что стало еще одним подтверждением их тесной взаимосвязи, если не сказать больше. Гепнер пришел к аналогичному выводу относительно совпадения величин взаимодействий Юкавы в статье, поданной в печать вскоре после этого.
В частности, Дистлер, Грин и независимо от них Гепнер обнаружили, что для многообразий определенного размера и формы можно рассчитать все корреляционные функции, представляющие собой набор математических выражений, которые, будучи сведены воедино, полностью характеризуют конформную теорию поля. Иными словами, результатом стала возможность представить связь между конформной теорией поля и многообразиями Калаби-Яу в строгих и исчерпывающих понятиях, путем определения как типа конформной теории поля со всеми корреляционными функциями, так и точного размера и формы соответствующего многообразия Калаби-Яу. Таким образом, ограниченному классу многообразий Калаби-Яу, известных на сегодняшний день, стало возможным сопоставить соответствующую модель Гепнера.
Эта связь, нашедшая надежное подтверждение в конце 1980-х годов, помогла опровергнуть мнение относительно бесполезности многообразий Калаби-Яу. Как сказал Качру, «можно не сомневаться в существовании предложенных им [Гепнером] конформных теорий поля, поскольку они являются полностью разрешимыми, в том числе и в численном виде. И если истинность этих теорий не вызывает сомнений, а их свойства аналогичны свойствам компактификаций Калаби-Яу, то в достоверности этих компактификаций также можно не сомневаться».
«Статья Гепнера позволила сохранить многообразия Калаби-Яу, — утверждает Эспинволл, — по крайней мере, для физики и теории струн». Более того, связь между моделью Гепнера и отдельными компактификациями Калаби-Яу помогла заложить основу для открытия зеркальной симметрии, что стало достаточным для исключения всех сомнений в том, заслуживают ли многообразия Калаби-Яу дальнейшего исследования.
Некоторые из наиболее ранних идей относительно зеркальной симметрии возникли в 1987 году, когда стэнфордский физик Ланс Диксон совместно с Гепнером установил, что различные K3-поверхности связаны с одной и той же квантовой теорией поля, что говорило о том, что эти совершенно различные поверхности связаны при помощи симметрии. При этом ни Диксон, ни Гепнер не публиковали статей по этой теме, хотя Диксон сделал несколько докладов, поэтому первой публикацией, посвященной зеркальной симметрии, по-видимому, стала вышедшая в 1989 году статья Вольфганга Лерке из Калифорнийского технологического института, Кумрана Вафы и Николаса Варнера из Массачусетского технологического института. Они доказали, что если взять два топологически различных трехмерных многообразия Калаби-Яу, то есть шестимерное многообразие Калаби-Яу вместо четырехмерной K3-поверхности, мы получим одну и ту же конформную теорию поля и, следовательно, ту же самую физику. Это утверждение было более сильным, чем утверждение Диксона-Гепнера, поскольку оно связывало многообразия Калаби-Яу с различной топологией, тогда как предыдущее относилось к поверхностям с одной и той же топологией, хотя и с различной геометрией (все K3-поверхности являются топологически эквивалентными). Проблема состояла в том, что никому не был известен способ объединения многообразий Калаби-Яу в пары, связанные между собой столь странным образом. Модели Гепнера оказались ключом к разгадке — и эти же модели помогли встретиться Брайану Грину и Ронену Плессеру.
Осенью 1988 года Брайан Грин, общаясь с Вафой, — их офисы находились на одном и том же «теоретическом» этаже здания, в котором размещался физический факультет Гарвардского университета, — узнал о существовании возможной связи между различными многообразиями Калаби-Яу. Грин моментально понял, что эта теория была бы чрезвычайно важна, если бы удалось ее доказать. Он объединил усилия с Вафой и Варнером, для того чтобы лучше понять взаимосвязь многообразий Калаби-Яу с моделью Гепнера. По словам Грина, в первую очередь он, Вафа и Варнер наметили шаги перехода от модели Гепнера к определенному многообразию Калаби-Яу. Исследователям удалось разработать «алгоритм, показывающий, почему и как связаны эти многообразия. Дайте мне модель Гепнера, и я в мгновение ока смогу показать вам, какому многообразию Калаби-Яу она соответствует». В статье Грина, Вафы и Варнера объяснялось, почему каждая модель Гепнера приводит к компактификации Калаби-Яу. Их анализ подтвердил догадки о согласовании моделей Гепнера с многообразиями Калаби-Яу, ранее сделанные самим Гепнером на основании рассмотрения таблиц многообразий Калаби-Яу и выбора из них тех многообразий, которые приводили к требуемой физике.
В 1989 году, когда связь между моделями Гепнера и многообразиями Калаби-Яу была установлена окончательно, Грин объединился с Плессером в надежде на дальнейшее продвижение. Одним из первых выводов, который им удалось сделать, по словам Грина, стал вывод о том, что «теперь мы имели мощный инструмент для анализа чрезвычайно сложной геометрии [Калаби-Яу] в виде теории поля, которую мы полностью контролируем и полностью понимаем». Их заинтересовал вопрос о том, что произойдет, если они слегка изменят модель Гепнера. Как они полагали, измененная модель будет соответствовать немного отличному многообразию Калаби-Яу. Для начала они применили к модели Гепнера преобразование, отвечающее вращательной симметрии, подобно повороту квадрата на 90 градусов. Эта операция оставила теорию поля неизменной. Однако, выполнив то же преобразование для многообразия Калаби-Яу, они получили многообразие с совершенно иной топологией и совершенно иной геометрией.
Иными словами, преобразование, отвечающее вращательной симметрии, изменило топологию многообразия Калаби-Яу, оставив неизменной сопутствующую ей конформную теорию поля. В результате теперь двум многообразиям Калаби-Яу с совершенно различной топологией можно было сопоставить одну и ту же физическую теорию. «Это, коротко говоря, и называется зеркальной симметрией», — поясняет Гепнер. Используя более общее понятие, можно также определить это свойство как дуальность, смысл которой состоит в том, что два объекта, с виду не имеющие отношения друг к другу, в данном случае — два многообразия Калаби-Яу, тем не менее порождают одну и ту же физику.
Первая статья Грина и Плессера по теме зеркальной симметрии описывала десять так называемых зеркальных партнеров, или зеркальных многообразий, обнаруженных среди нетривиальных и не являющихся совершенно плоскими многообразий Калаби-Яу, начиная с простейшего случая — трехмерной поверхности пятого порядка. Наряду с еще девятью примерами в этой статье содержалась формула, дающая возможность получить зеркальные пары для любой модели Гепнера, — на сегодня число подобных пар составляет сотни, если не тысячи.
Зеркальные многообразия имеют ряд интереснейших свойств, проявляющихся при сопоставлении объектов, которые ранее казались не имеющими отношения друг к другу. К примеру, Грин и Плессер обнаружили, что одно из многообразий Калаби-Яу может иметь 101 вариант формы и только один вариант размера; зеркальное же многообразие, напротив, будет иметь 101 вариант размера и единственный вариант формы. Многообразия Калаби-Яу могут иметь дырки различной размерности — как нечетной, так и четной. Грину и Плессеру удалось обнаружить любопытное взаимоотношение между зеркальными парами: число дырок нечетной размерности в многообразии равно числу дырок четной размерности в его зеркальном партнере, и наоборот. «Это означает, что общее число дырок… в обоих многообразиях одинаково, даже несмотря на то, что замена дырок четной размерности на дырки нечетной размерности приводит к совершенно различным формам и геометрическим структурам», — замечает Грин.
Рис. 7.1. Брайан Грин (© Андреа Кросса)
Рис. 7.2. Ронен Плессер (Duke Photography)
Рис. 7.3. Двойной тетраэдр, имеющий пять вершин и шесть граней, и треугольная призма, имеющая шесть вершин и пять граней, являются простыми примерами зеркальных многообразий. Эти привычные всем многогранники, в свою очередь, можно использовать для создания многообразия Калаби-Яу и его зеркальной пары, причем число вершин и граней многогранника будет определять внутреннюю структуру соответствующего многообразия Калаби-Яу. Подробности процедуры «конструирования» многообразия носят скорее технический характер, выходящий за рамки этого обсуждения
Это еще не объясняет «зеркальный» аспект обнаруженной симметрии, который проще проиллюстрировать при помощи топологии. Было установлено, например, что многообразия Калаби-Яу и их зеркальные партнеры имеют эйлеровы характеристики противоположных знаков, что говорит о существенном различии в их топологиях, хотя и несколько опосредованно, поскольку эти числа сами по себе дают только незначительную часть информации о пространстве и, как уже было показано ранее, многие пространства, заметно отличающиеся друг от друга, такие как куб, тетраэдр и сфера, могут иметь одинаковые эйлеровы характеристики. Можно показать это и более строго, представив эйлеровы характеристики в виде сумм и разностей целых чисел, называемых числами Бетти, которые содержат более полную информацию о внутренней структуре пространства.
Любой объект имеет n + 1 чисел Бетти, где n — размерность объекта. Таким образом, нульмерная точка имеет одно число Бетти; одномерная окружность — два числа Бетти; двухмерная поверхность, например сфера, — три числа Бетти и т. д. Первое число Бетти обозначается как b1 второе — как b2 и последнее — как bk где к-е число Бетти представляет собой количество независимых k-мерных циклов, или петель, которые могут быть обернуты вокруг пространства или многообразия или пропущены через рассматриваемое пространство или многообразие. Подробнее о циклах будет рассказано далее.
Рис. 7.4. Поверхности (речь идет об ориентируемых или двухсторонних поверхностях) можно различать топологически, сравнивая их числа Бетти. В целом число Бетти означает число способов, которыми можно провести разрез на двухмерной поверхности, не приводящих к образованию двух отдельных частей. Для сферы подобный разрез невозможен, поэтому ее число Бетти равно нулю. С другой стороны, бублик возможно разрезать двумя различными способами, не разделив его на две отдельные части, как показано на рисунке. Поэтому его число Бетти равно двум
В случае двухмерных поверхностей первое число Бетти описывает число возможных разрезов, которые не приводят к разделению объекта на два. Если взять поверхность сферы, являющуюся двухмерным пространством, то очевидно, что разрезать ее, не разделив на две части, невозможно. Это равносильно утверждению о том, что для сферы первое число Бетти равно нулю.
Рассмотрим теперь полый бублик. Проведя разрез вокруг бублика вдоль его «экватора», вы все равно получите цельный объект, хотя и вывернутый наизнанку. Аналогично, если разрез пройдет через дырку бублика, его цельность снова останется неприкосновенной, хотя внешний вид сильно пострадает. Поскольку существует только два способа разрезать бублик и ни один из них не приводит к образованию двух частей, можно утверждать, что его первое число Бетти равно двум.
Рис. 7.5. Матрица чисел размером 4×4, известная как ромб Ходжа, содержит в себе подробную топологическую информацию о многообразии Калаби-Яу, имеющем три комплексных измерения. Хотя многообразие Калаби-Яу нельзя однозначно охарактеризовать ромбом Ходжа, многообразия с различными ромбами Ходжа топологически различны. Ромбы Ходжа, приведенные на рисунке, являются зеркальными отображениями друг друга и соответствуют многообразию Калаби-Яу и его зеркальному партнеру
Теперь рассмотрим крендель с двумя дырками. Можно провести замкнутый разрез по внутренней поверхности каждой из его дырок или провести разрез по перемычке, соединяющей дырки, или же сделать разрез вдоль его внешнего края — крендель все равно останется объектом. Таким образом, существуют четыре способа разрезать крендель с двумя дырками, ни один из которых не приведет к возникновению двух отдельных частей, следовательно, его первое число Бетти равно четырем. А для кренделя с 18 дырками первое число Бетти равно 36.
Можно, однако, получить и более точное описание топологии различных многообразий. Каждое из чисел Бетти представляет собой сумму чисел, называемых числами Ходжа, открытыми шотландским математиком В. В. Д. Ходжом. Эти числа позволяют более пристально взглянуть на подструктуру пространства. Информация о ней содержится в так называемом ромбе Ходжа.
Ромбы Ходжа позволяют нам представить себе «зеркало» в зеркальной симметрии. Таблица из шестнадцати чисел соответствует определенному шестимерному многообразию Калаби-Яу, которое мы обозначим как М. Чтобы получить ромб Ходжа для зеркального многообразия М', нужно нарисовать прямую, проходящую через середины левой нижней и правой верхней сторон. После этого необходимо перевернуть числа Ходжа относительно этой прямой. Модифицированный ромб Ходжа, характеризующий многообразие, является зеркальным партнером исходного, буквально отражением или зеркальным отображением оригинала.
Тот факт, что числа Ходжа для многообразия и его зеркального партнера симметричны относительно диагонали, является следствием, а не объяснением зеркальной симметрии, поскольку это возможно и для двух многообразий, не являющихся зеркальными парами. Взаимосвязь между числами Ходжа для различных многообразий, обнаруженная Грином и Плессером, была не доказательством, а лишь намеком на то, что им удалось обнаружить новое проявление симметрии. Намного более убедительным, по словам Плессера, стало то, что им удалось обнаружить «полную идентичность» физики (или конформных теорий поля) многообразий, являющихся зеркальными парами.
Независимое подтверждение идей Грина и Плессера появилось в том же 1989-м, через несколько дней после того, как они отправили свою статью в печать. Как сообщил Грину Канделас, ему и двум его студентам удалось, перебрав большое количество рассчитанных на компьютере многообразий Калаби-Яу, обнаружить весьма интересную особенность. Они заметили, что эти многообразия образуют пары, в которых число дырок четной размерности для одного многообразия совпадало с числом дырок нечетной размерности для второго. Обнаруженный обмен числом дырок, количеством возможных форм и размеров и числами Ходжа между двумя многообразиями весьма заинтриговал исследователей, хотя и мог быть просто математическим совпадением. По словам Грина, «вполне возможно, что их связь имела такое же отношение к физике, как связь между магазином, в котором молоко продают по доллару, а сок — по два, и магазином, в котором сок стоит два доллара, а молоко — один. Точку в этом вопросе поставило доказательство, найденное мной и Плессером, которым мы показали, что различные пары многообразий Калаби-Яу приводят к одинаковой физике. Это и стало подлинным определением явления зеркальной симметрии — из которого уже проистекали все прочие следствия, — и это гораздо больше, чем простая перестановка двух чисел».
По словам Грина, эти два направления исследований были не только параллельными, но и «взаимодополняющими». В то время когда они с Плессером углубились в исследование физической природы указанных совпадений, Канделасу со своими студентами при помощи их компьютерной программы удалось обнаружить огромное количество многообразий Калаби-Яу, для которых числа Ходжа образовывали зеркальные пары. Когда эти статьи вышли в свет (обе в 1990 году), Грин объявил, что «зеркальная симметрия теории струн» окончательно установлена.
По словам Кумруна Вафы, он был счастлив, увидев доказательство, в которое он внес заметный вклад, — хотя и никогда не сомневался в существовании зеркальной симметрии. «Я иногда говорю, что если бы мы сформулировали эту теорию без каких-либо известных примеров, то это было бы намного более смелым шагом с нашей стороны», — иронизирует он.
Сначала я был настроен по отношению к исследовательской программе Вафы и Грина скептически, поскольку, как я неоднократно говорил им, все многообразия Калаби-Яу, обнаруженные на тот момент, имели отрицательные эйлеровы характеристики. Если их предположения имели под собой реальную основу и многообразия с противоположными знаками эйлеровых характеристик действительно образовывали пары, то число многообразий с положительными эйлеровыми характеристиками должно было быть примерно таким же, как и число многообразий с отрицательными эйлеровыми характеристиками, поскольку эйлеровы характеристики многообразия и его зеркального партнера имеют противоположные знаки. К счастью, эти рассуждения не заставили Вафу, Грина, Плессера и других отказаться от исследований, посвященных поиску нового типа симметрии. Мораль этой истории заключается в том, что, вместо того чтобы заранее делать ставки на возможность или невозможность чего-либо, лучше просто взять и проверить. Вскоре после этого нами было обнаружено огромное количество многообразий Калаби-Яу с положительными эйлеровыми характеристиками — достаточно большое, для того чтобы я мог отбросить свои первоначальные сомнения.
Вскоре я попросил Грина выступить перед собранием математиков с докладом по вопросу зеркальной симметрии; этот доклад собирался посетить, в том числе, и такой авторитет, как И. М. Зингер из Массачусетского технологического института. Будучи физиком по образованию, Грин весьма переживал по поводу выступления перед таким большим скоплением людей. Я же посоветовал ему как можно чаще в своей лекции использовать слово «квантовый», зная, какое впечатление оно производит на математиков. Так, зеркальную симметрию я предложил ему описать в терминах «квантовой когомологии» — термина, пришедшего мне в голову в это время.
Объектом исследования когомологии являются циклы, или петли на многообразии, а также типы их пересечения. Циклы, в свою очередь, связаны с подповерхностями в пределах многообразия, также называемыми подмногообразиями, не имеющими границ. Чтобы лучше понять, что имеется в виду под понятием подмногообразия, представьте себе кусок швейцарского сыра в форме шара. Можно, рассматривая этот сырный шар как единое трехмерное пространство, попробовать завернуть его в полиэтиленовую пленку. Но и внутри этого шара можно также найти сотни дырок — подповерхностей в пределах большей поверхности, — которые тоже можно чем-то покрыть или что-то через них пропустить, например резиновую ленту. Подмногообразие представляет собой геометрический объект с четко определенными размером и формой. Для физика цикл — это просто менее строгое определение петли, основанное исключительно на ее топологии, тогда как большинство геометров не видят никакой разницы между циклом и подмногообразием. Тем не менее мы стремимся использовать циклы — подобные окружностям, проходящим через дырку бублика, — для того, чтобы получить информацию о топологии многообразия.
Физикам знаком метод, позволяющий связать квантовую теорию поля с заданным многообразием. Однако поскольку многообразие, как правило, имеет бесконечное число циклов, они обычно прибегают к аппроксимации, сводящей это бесконечное число к конечному, с которым уже можно свободно обращаться. Этот процесс носит название квантования — взяв величину, которая может принимать бесконечное число возможных значений, например частоты радиоволн в FM-диапазоне, только о некоторых из них говорят как о разрешенных. Подобный процесс приводит к введению квантовых поправок в исходное уравнение, которое описывает циклы и, следовательно, когомологию. По этой причине говорят именно о квантовой когомологии.
Как оказалось, существует не единственный способ введения квантовых поправок. Благодаря зеркальной симметрии для любого многообразия Калаби-Яу можно построить эквивалентный ему с физической точки зрения зеркальный партнер. Многообразия, являющиеся зеркальными партнерами, описываются двумя различными по виду, но эквивалентными по сути вариантами теории струн, типа IIA и типа IIB, которые описывают одну и ту же квантовую теорию поля. Мы можем сделать эти расчеты относительно легко для модели В, где квантовые поправки оказываются равными нулю. Расчет же для модели А, в которой квантовые поправки в нуль не обращаются, практически невозможен.
Примерно через год после выхода статьи Грина и Плессера, внимание математического сообщества привлекло новое открытие в области зеркальной симметрии. Канделасу, Ксении де ла Осса, Полу Грину и Линде Паркс удалось показать, что зеркальная симметрия может оказать помощь при разрешении математических задач, в частности в области алгебраической и нумеративной геометрии, в том числе некоторых из тех, что не поддавались математикам на протяжении десятилетий. Задача, которую рассмотрел Канделас со своими коллегами, носила название задачи трехмерной поверхности пятого порядка и в то время была у всех на слуху. Свое второе название — задача Шуберта — она получила в честь немецкого математика XIX века Германа Шуберта, решившего ее первую часть. Задача Шуберта имеет отношение к определению количества рациональных кривых — то есть кривых рода 0, не имеющих дырок, таких как сфера, — которые можно провести на многообразии Калаби-Яу пятого порядка (шестимерном).
Подобный расчет может показаться весьма странным занятием для того, кто не увлекается нумеративной геометрией, — для тех же, кто работает в этой области, подобная деятельность является вполне привычной. На самом деле задача весьма проста — это не сложнее, чем высыпать на стол конфеты из вазы и сосчитать их. Расчет числа определенных объектов на многообразии и очерчивание круга приложений, в которых полученное число может оказаться полезным, на протяжении столетия или больше были важнейшими задачами для математиков. Число, которое необходимо найти, в конце этого процесса должно оказаться конечным, поэтому поиск нужно ограничить компактными пространствами, небесконечными плоскостями. Если, к примеру, необходимо рассчитать число точек пересечения между двумя кривыми, то в случае наличия точек соприкосновения между кривыми могут возникнуть затруднения. Впрочем, математики, занимающиеся нумеративной геометрией, уже разработали методики, позволяющие разобраться с этими сложностями и получить строго определенное число.
Одна из первых задач такого типа была сформулирована приблизительно в 200 году до нашей эры греческим математиком Аполлонием, которого интересовал следующий вопрос: если даны три окружности, то сколькими способами можно нарисовать четвертую так, чтобы она касалась всех трех одновременно? Ответ на этот вопрос (восемь) может быть получен с помощью линейки и циркуля. Для решения же задачи Шуберта необходимы более сложные вычисления.
В работе над этой задачей математики избрали поэтапный подход, рассматривая за раз только одну степень. Под степенью понимается наивысшая из степеней слагаемых, входящих в многочлен. К примеру, степень полинома 4x2-5y3 равна трем, 6х3y4+4x — семи (степени х3 и y4 складываются), а 2x+3y-4 — единице (график этой функции — прямая линия). Итак, задача состояла в том, чтобы выбрать многообразие (в нашем случае речь идет о трехмерной поверхности пятого порядка) и степень (порядок) кривых, количество которых необходимо было подсчитать.
Шуберт решил эту задачу для кривых первого порядка, показав, что на поверхности пятого порядка можно провести ровно 2875 кривых. Почти через сто лет после этого, в 1986 году, Шелдон Кац, в настоящее время работающий в Университете штата Иллинойс, показал, что число кривых второго порядка, подобных окружностям, на той же поверхности равно 609 250. Канделас, де ла Осса, Грин и Паркс, в свою очередь, рассмотрели случай кривых третьего порядка, от которого легко перейти к задаче о числе сфер, которые можно разместить в определенном пространстве Калаби-Яу. В этом им помог прием, основанный на зеркальной симметрии. В то время как решение задачи для многообразия пятого порядка было чрезвычайно сложным, его зеркальный партнер, созданный Грином и Плессером, позволял найти намного более простой путь к решению.
Кроме того, в первой статье Грина и Плессера, посвященной зеркальной симметрии, была выдвинута ключевая идея о том, что взаимодействия Юкавы можно представить при помощи двух различных математических формул, одна из которых будет описывать исходное многообразие, а вторая — его зеркальную пару. Первая из этих формул, включающая в себя число рациональных кривых различных степеней, которые можно было обнаружить на многообразии, по словам Грина, была просто «кошмарной». Со второй формулой, зависящей от формы многообразия в более общем виде, работать было намного проще. Однако так как обе формулы описывали один и тот же физический объект, они должны быть эквивалентными — подобно словам «кот» и «cat», которые имеют различный вид, но описывают одно и то же пушистое существо. Статья Грина и Плессера содержала уравнение, из которого напрямую следовала эквивалентность этих двух столь различных формул.
Рис. 7.6. Выдающимся достижением геометрии XIX века стало доказательство математиками Артуром Кэли и Джорджем Сэлмоном утверждения, что поверхность третьего порядка, приведенная на рисунке, содержит ровно 27 прямых. Герман Шуберт впоследствии обобщил этот результат, получивший название теоремы Кэли-Сэлмона (изображение предоставлено 3D-XplorMath Consortium)
Рис. 7.7. Подсчет числа прямых или кривых на поверхности является обычной задачей алгебраической и нумеративной геометрии. Чтобы лучше понять, что подразумевается под числом прямых на поверхности, рассмотрим приведенный на рисунке дважды линейчатый гиперболоид как поверхность, полностью состоящую из прямых. Он называется дважды линейчатым, поскольку через каждую его точку проходят две различные прямые линии. Подобная поверхность плохо подходит для нумеративной геометрии по причине бесконечного числа прямых, которые можно на ней провести (фотография Карена Шаффнера, математический отдел Аризонского университета)
Рис. 7.8. Задача Аполлония, одна из наиболее известных задач в геометрии, посвящена вопросу о числе способов, которыми можно нарисовать окружность, касательную к трем заданным. Постановка задачи и первое решение приписывается греческому математику Аполлонию Пергскому (приблизительно 200 год до нашей эры) На рисунке приведены восемь решений этой задачи — восемь различных касательных окружностей. Спустя две тысячи лет математик Герман Шуберт рассмотрел аналогичную задачу в трехмерном пространстве, показав, что построить сферу, касательную к четырем заданным сферам, можно шестнадцатью способами
«Даже если у тебя есть уравнение, в достоверности которого с формальной точки зрения ты не сомневаешься, решить его с достаточной точностью и получить ответ в виде числа может оказаться сложной задачей, — замечает Грин. — У нас было уравнение, но не было инструментов для получения определенного числа. Канделас и его сотрудники разработали эти инструменты, что стало крупнейшим достижением, оказавшим огромное влияние на геометрию».
Работа Грина и Плессера наглядно иллюстрирует всю мощь зеркальной симметрии. Теперь можно было не утруждать себя подсчетом числа кривых в пространстве Калаби-Яу, поскольку, проведя совершенно другое вычисление — с виду не имеющее ничего общего с работой по подсчету кривых, — можно было получить тот же ответ. Когда Канделас и его коллеги применили этот подход к расчету количества кривых третьего порядка на трехмерной поверхности пятого порядка, они получили число 317 206 375.
Наш интерес, однако, заключался не столько в определении количества рациональных кривых, сколько в исследовании многообразия как такового. Дело в том, что в процессе подсчета мы по сути дела перемещаемся по кривым, используя хорошо разработанные методики, до тех пор пока не проходим все пространство. В ходе этой процедуры мы фактически определяем пространство — неважно, будет это трехмерная поверхность пятого порядка или какое-либо другое многообразие, — в терминах данных кривых.
Результатом всего вышесказанного стало второе рождение уже порядком подзабытой области геометрии. По словам Марка Гросса, математика из Калифорнийского университета, идея использования зеркальной симметрии для решения задач нумеративной геометрии, впервые предложенная Канделасом и его сотрудниками, привела к возрождению целой дисциплины. «К тому времени эта область исследований почти полностью исчерпала себя, — говорит Гросс. — Когда все старые задачи были решены, ученые занялись перепроверкой чисел Шуберта при помощи современных вычислительных технологий, но это занятие едва ли можно было назвать увлекательным. И вдруг, как гром с ясного неба, Канделас заявил о разработке ряда новых методов, выходящих далеко за пределы того, что мог представить себе Шуберт». Физики многое заимствуют из математики, а вот математики, прежде чем заимствовать из физики метод Канделаса, прежде всего потребовали более детального обоснования его строгости.
Случайно, приблизительно в это же время — в мае 1991 года, если быть точным, — я организовал конференцию в Исследовательском институте математических наук Беркли, для того чтобы математики и физики получили возможность поговорить о зеркальной симметрии. И. М. Зингер, один из основателей института, изначально выбрал для конференции другую тему, но мне удалось его переубедить, упомянув некоторые из новых открытий в области зеркальной симметрии, которые представлялись мне особенно захватывающими. Зингер как раз незадолго до этого посетил лекцию Брайана Грина и потому легко согласился со мной и попросил возглавить это мероприятие.
Я возлагал большие надежды на то, что эта конференция позволит преодолеть барьеры между родственными областями исследований, возникающие из-за разницы в языке и накопленных знаниях. Во время конференции Канделас представил результаты, полученные им для проблемы Шуберта, но оказалось, что его число заметно отличалось от числа, полученного гораздо более строгим путем двумя норвежскими математиками Гейром Эллингсрудом и Штейном Арилдом Штремме (их ответ был — 2 682 549 425). В силу присущей им заносчивости, математики, работающие в области алгебраической геометрии, обвинили физиков в том, что те допустили ошибку. Прежде всего, по словам математика из Кайзерслаутернского университета Андреаса Газмана, «математики просто не понимали того, чем занимались физики, поскольку они [физики] использовали совершенно другие методы — не существующие в математике и далеко не всегда строго доказанные».
Канделас и Грин были весьма озабочены возможностью допущенной ими ошибки, но им никак не удавалось понять, где именно они встали на неверный путь. В то время я много общался с обоими, особенно с Грином, и меня также занимал вопрос, где именно в процессе интегрирования по бесконечномерному пространству, которое нужно было затем свести к конечной размерности, могла быть допущена какая-либо неточность. Конечно, в ходе математических преобразований неоднократно приходилось сталкиваться с проблемой выбора, причем ни один из вариантов нельзя было считать совершенным. Однако хотя все это ставило Канделаса и Грина в несколько неловкое положение, нам не удавалось обнаружить какую-либо погрешность в их рассуждении, основанном скорее на физических идеях, нежели на строгом математическом доказательстве. Более того, несмотря на критику со стороны математиков, они остались верны зеркальной симметрии.
Все прояснилось приблизительно через месяц, когда Эллингсруд и Штремме обнаружили ошибку в своей компьютерной программе. Исправив ее, они получили тот же ответ, что и Канделас с соавторами. Норвежские математики проявили высокую степень научной честности, запустив заново свою программу, перепроверив результаты и обнародовав свою ошибку. На их месте многие постарались бы скрывать найденную ошибку как можно дольше, но Эллингсруд и Штремме сделали противоположное, моментально проинформировав научное сообщество как об ошибке, так и о ее исправлении.
Для зеркальной симметрии заявление, сделанное Эллингсрудом и Штремме, стало настоящим моментом истины. Оно не только привело к дальнейшему развитию этой области, но и помогло изменить отношение к самой идее. Если до этого многие математики считали зеркальную симметрию полной чушью, то теперь пришлось признать, что им все же есть чему поучиться у физиков. Показательно, что математик Дэвид Моррисон, в то время работавший в Университете Дьюка, на встрече в Беркли был одним из наиболее ярых критиков. Однако после описанных событий его мнение полностью изменилось, и вскоре ему даже удалось внести существенный вклад в концепцию зеркальной симметрии, теорию струн и теорию переходов с изменением топологии для многообразий Калаби-Яу.
Разобравшись с проблемой Шуберта для кривых третьего порядка, Канделас и его коллеги применили разработанный ими метод зеркальной симметрии для нахождения решений в случае кривых со степенями от единицы до десяти. В результате они получили общую формулу, позволяющую для трехмерной поверхности пятого порядка найти число кривых любой необходимой степени. Проделав это, они встали на прямую дорогу, ведущую к решению задачи вековой давности, еще в 1900 году названной немецким математиком Дэвидом Гильбертом одной из двадцати трех важнейших математических задач современности, — речь идет о попытке построить «строгое основание исчислительной геометрии Шуберта», обеспечив таким образом «возможность заранее предсказать как степень полученных уравнений, так и число их решений». Формула, выведенная Канделасом, удивила многих из нас. Численные решения задачи Шуберта оказались обычными последовательностями чисел, не имеющими ни общих особенностей поведения, ни видимых связей между собой. Впрочем, работа Канделаса и его коллег показала, что эти числа не являются случайными, а представляют собой важную часть завершенной структуры.
Существование данной структуры, установленное Канделасом и его сотрудниками, позволило получить формулу, необходимую для дальнейшей работы. Эта формула была проверена при помощи большого числа математических вычислений для полиномов со степенями от одного до четырех. О первых трех задачах уже шла речь ранее, а для кривых четвертого порядка решение было получено в 1995 году математиком Максимом Концевичем (в настоящее время работает в Институте высших научных исследований) — он получил число 242 467 530 000. Хотя формула, полученная группой Канделаса, полностью согласовывалась со всеми известными данными, вопрос о строгом доказательстве все еще был открыт. Многие математики, включая Концевича, предприняли немало усилий для представления уравнений Канделаса в форме полноценной гипотезы — в основном, за счет определения слагаемых, входящих в уравнения. Полученное в результате утверждение, известное как гипотеза о зеркальной симметрии, уже можно было подвергнуть окончательной проверке — математическому доказательству. Доказательство гипотезы о зеркальной симметрии стало обоснованием идеи зеркальной симметрии самой по себе.
Здесь я вынужден упомянуть одну из конфликтных ситуаций, которые время от времени возникают в математике. Как мне кажется, подобные ситуации неизбежны, поскольку мы живем в несовершенном мире, населенном несовершенными существами, а математика, несмотря на устоявшееся мнение о ней, совсем не является чистой интеллектуальной деятельностью, огражденной от политики, честолюбия, конкуренции и эмоций. Часто оказывается, что в подобных вопросах чем мельче причина для спора, тем большие она вызывает разногласия.
Мы с моими коллегами занимались исследованием гипотезы о зеркальной симметрии и ее обобщениями с 1991 года — со времени объявления Канделасом своих результатов. В статье, выложенной на сайт arXiv.org в марте 1996 года, Александр Гивенталь из Калифорнийского университета заявил, что ему удалось доказать гипотезу о зеркальной симметрии. Мы тщательно проработали эту статью и сочли ее — и в этом мы были не одиноки — крайне неясной. В том же году я лично пригласил моего коллегу из Массачусетского технологического института, считавшегося экспертом в этой области (который пожелал, чтобы его имя в этой книге осталось неназванным), прочитать на моем семинаре лекцию, посвященную доказательству Гивенталя. Он вежливо отказался, упомянув о своих серьезных сомнениях в убедительности аргументов, приведенных в статье. Точно так же и мне с моими коллегами не удалось шаг за шагом воспроизвести доказательство Гивенталя, несмотря на все наши попытки связаться с ним и соединить воедино те фрагменты, которые нам казались наиболее запутанными. Тогда мы приняли решение оставить эти бесплодные усилия и год спустя опубликовали наше собственное доказательство гипотезы о зеркальной симметрии.
Некоторые эксперты, в том числе Газман, назвали нашу статью «первым полным и строгим доказательством» гипотезы, аргументируя это тем, что доказательство Гивенталя «было весьма тяжелым для понимания, а в ряде мест — неполным». Дэвид Кокс, математик из колледжа Амхерст, являвшийся соавтором (вместе с Кацом) книги «Зеркальная симметрия и алгебраическая геометрия», также заявил о том, что мы представили «первое полное доказательство гипотезы». С другой стороны, многие придерживались иного мнения, утверждая, что доказательство Гивенталя, опубликованное за год до нашего, было абсолютно полным и не содержало в себе каких-либо серьезных пробелов. Оставляя другим возможность продолжать дискуссию по этому поводу, сам я полагаю наилучшим объявить, что эти две статьи, сведенные вместе, представляют собой доказательство гипотезы о зеркальной симметрии, и оставить этот вопрос. Дальнейшее продолжение спора не имеет смысла, особенно в свете того, что в математике все еще полно нерешенных проблем, являющихся куда более достойным объектом для приложения усилий.
Итак, отбросив противоречия, зададимся вопросом: что же доказывают эти две статьи? Прежде всего, доказательство гипотезы о зеркальной симметрии подтвердило правильность формулы Канделаса для числа кривых определенного порядка. Но на самом деле наше доказательство было шире. Формула Канделаса была применима для подсчета числа кривых только на трехмерной поверхности пятого порядка, тогда как наши доказательства можно было использовать для гораздо более широкого класса многообразий Калаби-Яу, в том числе и для тех многообразий, к которым проявляют интерес физики, а также для других объектов, таких как векторные расслоения, о которых пойдет речь в девятой главе. Более того, наше обобщение позволяло использовать гипотезу о зеркальной симметрии не только для подсчета кривых, но и для получения других геометрических характеристик.
Как мне кажется, доказательство этой гипотезы позволило провести последовательную проверку некоторых идей из области теории струн с точки зрения строгой математики, что обеспечило данной теории крепкую математическую основу. Впрочем, теория струн не осталась в долгу перед математикой, поскольку зеркальная симметрия привела к созданию нового раздела алгебраической геометрии — нумеративой геометрии, — внеся существенный вклад в решение давних проблем в этой области. В самом деле, многие из моих коллег, занимающихся алгебраической геометрией, рассказывали мне, что единственной работой за последние пятнадцать лет, которая вызвала у них интерес, стала работа, вдохновленная идеями о зеркальной симметрии. Огромный вклад в математику со стороны теории струн вынудил меня признать, что физическая интуиция определенно должна чего-то стоить. Это означало, что даже если природа и не работает строго по законам теории струн, эта теория, тем не менее, должна содержать в себе немалую долю истины, поскольку ее применение открывало путь к решению многих классических проблем, которые математики были не в состоянии решить самостоятельно. Даже сейчас, много лет спустя, невозможно представить себе независимый путь вывода формулы Канделаса, в котором не использовались бы идеи теории струн.
По иронии, единственным вопросом, который доказательство гипотезы о зеркальной симметрии так и оставило открытым, стал вопрос об определении самого понятия зеркальной симметрии. Во многих отношениях это явление, открытое физиками и впоследствии нашедшее заметное применение в математике, так и осталось загадкой, хотя в настоящее время уже определены два основных подхода, которые могут привести к ответу, — один из них известен как гомологическая зеркальная симметрия, другой же носит название гипотезы SYZ. Если гипотеза SYZ представляет собой попытку интерпретации зеркальной симметрии с геометрической точки зрения, то гомологическая зеркальная симметрия основана на алгебраическом подходе.
Для начала рассмотрим тот из двух подходов, в который мне удалось внести более заметный вклад, а именно гипотезу SYZ, название которой представляет собой аббревиатуру, образованную из первых букв фамилий авторов ключевой статьи по этой теме, вышедшей в 1996 году: Эндрю Строминджер — это S, Эрик Заслоу из Северо-Западного университета — это Z, а я — это Y. Подобные взаимодействия между учеными редко имеют формальную отправную точку — это, например, началось с моих случайных разговоров со Строминджером на конференции 1995 года в Триесте. Строминджер рассказывал о статье, написанной им незадолго до этого совместно с Кэтрин и Мелани Беккер, сестрами, в настоящее время занимающимися физикой в Техасском университете А&М. Так как D-браны в то время уже произвели немало шума в теории струн, целью статьи стало исследование того, как эти браны вписываются в геометрию Калаби-Яу. Идея авторов заключалась в том, что браны могут оборачиваться вокруг подмногообразий, находящихся внутри пространств Калаби-Яу. Сестры Беккер и Строминджер исследовали класс подмногообразий, сохраняющих суперсимметрию, что привело к открытию ряда весьма интересных свойств. Меня и Строминджера заинтересовал вопрос о той роли, которую эти подмногообразия могут играть в зеркальной симметрии.
Я вернулся в Гарвард, вдохновленный открывшейся возможностью, и сразу же обсудил ее с Заслоу, физиком, перешедшим в математику, который в то время был моим постдоком. Вскоре Строминджер приехал из Санта-Барбары в Гарвардский университет, руководство которого развернуло активную кампанию по переманиванию его в свои ряды. Впрочем, для того чтобы Строминджер принял окончательное решение о переходе, понадобился еще год. Итак, мы втроем смогли встретиться, соединив тем самым буквы S, Y и Z в одном и том же месте, в одно и то же время — и, впоследствии, на одной и той же странице статьи, поданной нами в печать в июне 1996 года.
Окажись гипотеза SYZ верной, это стало бы аргументом в пользу существования подструктуры многообразий Калаби-Яу, что привело бы к более глубокому пониманию их геометрии. Согласно этой гипотезе, многообразие Калаби-Яу можно представить в виде двух трехмерных многообразий, переплетенных друг с другом. Одним из этих пространств является трехмерный тор. Отделив этот тор от другой части, «обратив» его (заменив радиус r обратной величиной 1/r) и вновь соединив части в одно целое, вы получите многообразие, являющееся зеркальным по отношению к исходному. Как утверждает Строминджер, SYZ «позволяет получить простую физическую и геометрическую картину того, чему соответствует зеркальная симметрия».
Согласно гипотезе SYZ, ключ к пониманию зеркальной симметрии лежит в подмногообразиях пространств Калаби-Яу и в способе их организации. Вы, наверное, помните приведенное ранее сравнение поверхности, содержащей в себе множество подповерхностей или подмногообразий, с куском швейцарского сыра. Подмногообразия в данном случае являются не участками поверхности, а отдельными объектами с размерностью меньше размерности многообразия, представляющими собой отдельные дырки в «сыре», каждую из которых можно по отдельности покрыть чем-либо или пропустить что-либо сквозь нее. Точно так же, согласно гипотезе SYZ, и подмногообразия в пространствах Калаби-Яу обернуты D-бранами. Не хотелось бы вносить в дальнейший рассказ путаницу, но не могу не упомянуть, что существует и другое мнение, согласно которому D-браны сами являются подмногообразиями, а не просто их «упаковками». Физики предпочитают рассуждать в терминах бран, тогда как математикам удобнее пользоваться собственной терминологией. Подпространства такого типа, удовлетворяющие условию суперсимметрии, носят название лагранжевых подмногообразий и, как следует из их названия, обладают особыми свойствами: их размерность ровно вдвое меньше размерности пространств, в которых они находятся, а их мера (то есть длина, площадь, объем и т. д. — в зависимости от размерности) является минимальной.
Рассмотрим в качестве примера простейшее из возможных пространств Калаби-Яу — двухмерный тор, или бублик. В роли лагранжева подмногообразия в данном случае будет выступать одномерное пространство — объект, представляющий собой петлю, пропущенную через дырку бублика. Поскольку длина петли должна быть минимальна, петля должна точно совпадать с наименьшей из окружностей, проходящих через дырку, — варианты с петлями произвольного размера, а также с волнистыми и искривленными петлями не подходят. «Все многообразие Калаби-Яу в этом случае представляет собой объединение окружностей, — объясняет Марк Гросс, человек, сделавший больше всех остальных для развития гипотезы SYZ с того момента, как она была сформулирована. — Пусть существует некое вспомогательное пространство, назовем его В, несущее в себе информацию обо всех этих окружностях и само по себе являющееся окружностью». Говорят, что В параметризирует этот набор окружностей, то есть каждой точке на В соответствует определенная окружность, а каждой окружности, проходящей через дырку бублика, — определенная точка пространства В. Можно представить это и по-другому, сказав, что пространство В, называемое пространством модулей, является в определенном смысле каталогом подпространств, из которых состоит многообразие. При этом В — не просто список: помимо «перечня подпространств» оно содержит и информацию об их расположении. По словам Гросса, пространство модулей В может стать ключом ко всей гипотезе SYZ. Поэтому стоит потратить еще немного времени, чтобы разобраться поподробнее со вспомогательными пространствами.
Если добавить еще одно комплексное измерение, перейдя таким образом от двух вещественных измерений к четырем, многообразие Калаби-Яу превратится в K3-поверхность. Подмногообразия, в свою очередь, в этом случае являются уже не окружностями, а двухмерными торами, соединенными в единое целое в рамках многообразия. «Изобразить четырехмерное пространство мне не под силу, — говорит Гросс. — Но я могу описать пространство В, указывающее на то, в каком порядке расположены составляющие его подмногообразия (бублики)». В этом случае пространство В представляет собой просто двухмерную сферу. Каждая точка этой сферы соответствует отдельному бублику, за исключением двадцати четырех «плохих» точек, соответствующих «сжатым бубликам», имеющим сингулярности, смысл которых будет вкратце объяснен далее.
Добавим еще одно комплексное измерение, превратив рассматриваемое многообразие в трехмерное многообразие Калаби-Яу. Пространство В теперь превратится в трехмерную сферу (трехмерную поверхность мы изобразить не в состоянии), а ее подпространства — в трехмерные бублики. В этом случае набор «плохих» точек, соответствующих сингулярным бубликам, приходится на линейные сегменты, связанные друг с другом подобием сети. «Все точки линейного сегмента являются “плохими” [или сингулярными], однако те из них, которые лежат в вершинах сети, в местах пересечения сразу трех линейных сегментов, являются совсем плохими», — говорит Гросс. Эти точки, в свою очередь, соответствуют наиболее искаженным бубликам.
Рис. 7.9. Гипотеза SYZ, названная в честь ее авторов, Эндрю Строминджера, автора данной книги (Шинтана Яу) и Эрика Заслоу, предлагает способ разложения сложного пространства, такого как многообразие Калаби-Яу, на составные части, или подмногообразия. Хотя мы не в силах изобразить шестимерное многообразие Калаби-Яу, вместо этого мы можем нарисовать двухмерное (имеющее два вещественных измерения) пространство Калаби-Яу, представляющее собой бублик с плоской метрикой. Подмногообразия, образующие бублик, являются окружностями, и их порядок определяется вспомогательным пространством В, также представляющим собой окружность. Каждая точка на В соответствует определенной окружности; и все многообразие — или бублик — состоит из набора подобных окружностей
Рис. 7.10. Гипотеза SYZ предоставляет новый взгляд на K3-поверхности, являющиеся классом четырехмерных многообразий Калаби-Яу. Согласно гипотезе SYZ, мы можем создать K3-поверхность, взяв двухмерную сферу, являющуюся вспомогательным пространством в данном примере, и прикрепив к каждой ее точке двухмерный бублик
Именно здесь и проявляется зеркальная симметрия. Работая над первоначальной идеей SYZ, оксфордский геометр Найджел Хитчин, Марк Гросс и некоторые из моих бывших студентов (Найчанг Линг, Вейдонг Руан и другие) построили следующую картину. Рассмотрим многообразие X, состоящее из набора подмногообразий, перечисленных в пространстве модулей В. Теперь возьмем подмногообразия, имеющие радиус r, и заменим его на обратную величину 1/r. Одной из неожиданных, хотя и прекрасных особенностей теории струн, не присущей классической механике, является возможность провести подобную замену, а именно перевернуть радиус цилиндра, сферы или пространства, не изменив при этом их физические характеристики. Движение точечной частицы по окружности радиуса r можно описать при помощи ее момента импульса, который при этом квантуется — принимает строго определенные значения, кратные постоянной Планка — ℏ. Струна, движущаяся по окружности, также обладает моментом импульса, но, в отличие от точечной частицы, она может наматываться на окружность один или более раз. Число оборотов струны вокруг окружности называется ее топологическим числом. Итак, движение струны, в отличие от движения частицы, характеризуется двумя квантующимися величинами: ее моментом импульса и ее топологическим числом. Рассмотрим струну с топологическим числом, равным двум, и моментом импульса, равным нулю, движущуюся по окружности радиуса r, и струну с топологическим числом, равным нулю, и моментом импульса, равным двум (то есть 2ℏ), движущуюся по окружности радиуса 1/r. Хотя описания этих двух случаев звучат по-разному и вызывают в воображении разные картины, с математической точки зрения оба случая идентичны и приводят к одним и тем же физическим характеристикам. Это свойство известно как T-дуальность. «Эта эквивалентность переходит с окружностей на их [декартовы] произведения — торы», — говорит Заслоу. Буква T в названии «T-дуальность» и означает «торы». Строминджер, Заслоу и я сочли эту дуальность столь важной для зеркальной симметрии, что назвали нашу первую статью, посвященную гипотезе SYZ, «T-дуальность — это зеркальная симметрия».
Приведу простой пример, показывающий тесную взаимосвязь T-дуальности и зеркальной симметрии. Пусть многообразие М представляет собой тор — прямое произведение двух окружностей радиуса r. Многообразие, зеркальное к нему, М', также является тором — произведением двух окружностей радиуса 1/r. Представим себе теперь, что r чрезвычайно мало. Столь крошечный размер многообразия М приводит к тому, что для понимания связанной с ним физики нужно принимать во внимание квантовые эффекты. Таким образом, сложность расчетов многократно возрастает. Извлечь же физические характеристики из зеркального многообразия М', намного легче, поскольку для очень малого r величина 1/r будет очень велика, и квантовые эффекты можно свободно проигнорировать. Итак, зеркальная симметрия под личиной T-дуальности может существенно упростить ваши расчеты и жизнь в целом.
Теперь попробуем собрать воедино все идеи, выдвинутые ранее, начиная с нашего двухмерного примера. Заменив радиусы всех подмногообразий (окружностей) на 1/r, вы обнаружите, что многообразие, состоящее из этих окружностей, изменит свой радиус, но все равно останется тором. Данный пример называют тривиальным, поскольку многообразие и его зеркальный партнер топологически идентичны. Четырехмерный пример с K3-поверхностями также является в некотором отношении тривиальным, поскольку все K3-поверхности топологически эквивалентны. Шестимерный пример с трехмерными многообразиями Калаби-Яу намного интереснее. Компонентами этого многообразия являются трехмерные торы. T-дуальность заменяет их радиусы на обратные. Для несингулярного тора изменение радиуса не приводит к изменению топологии. Однако по словам Гросса, «даже если все исходные подмногообразия принадлежали к числу “хороших” [несингулярных], изменение радиуса все же может повлечь за собой изменение топологии многообразия в целом, поскольку части… могут быть собраны вместе нетривиальным образом».
Это утверждение проще всего понять при помощи аналогии. Взяв набор линейных сегментов или, например зубочисток, можно сделать из них цилиндр, втыкая их определенным образом в кружок из пробки. Вместо цилиндра, имеющего две стороны, из тех же зубочисток можно сделать и одностороннюю ленту Мёбиуса, втыкая их под небольшим углом друг к другу. Итак, из одних и тех же частей (подмногообразий) можно получить объекты с совершенно разной топологией.
Дело в том, что, проведя преобразование T-дуальности и используя различные методы сборки подмногообразий, мы получим два топологически различных многообразия, идентичных с точки зрения физики. Это часть того, что мы подразумеваем под зеркальной симметрией, но это далеко не все, поскольку другая важная особенность T-дуальности состоит в том, что зеркальные пары должны иметь эйлеровы характеристики противоположных знаков. Однако все многообразия, рассмотренные здесь — особые лагранжевы многообразия, — имеют эйлеровы характеристики, равные нулю, которые не изменяются при замене радиусов на 1/r.
Все сказанное выше выполняется для «хороших» (несингулярных) подмногообразий, а для «плохих» (сингулярных) работать не будет. В таких подмногообразиях T-дуальность приведет к изменению знака эйлеровой характеристики с +1 на -1 и наоборот. Предположим, что исходное многообразие включает тридцать пять плохих подмногообразий, двадцать пять из которых имеют эйлерову характеристику, равную + 1, а десять — равную -1. Как показал Гросс, эйлерова характеристика многообразия является суммой эйлеровых характеристик входящих в него подмногообразий — в данном случае она будет равна + 15. В зеркальном многообразии все будет наоборот: двадцать пять подмногообразий будут иметь эйлерову характеристику, равную -1, а десять — +1, что даст в результате -15 — величину, противоположную эйлеровой характеристике исходного многообразия — что как раз и было нам нужно.
Эти “плохие” подмногообразия, как уже обсуждалось выше, соответствуют “плохим” точкам в пространстве модулей В. Как объясняет Гросс: «Все самое интересное в зеркальной симметрии, все топологические изменения происходят в вершинах пространства В». Итак, возникшая картина делает пространство В центральным объектом зеркальной симметрии. С самого начала это явление было покрыто мистическим туманом. «У нас были в наличии два многообразия, X и X', неким образом связанные друг с другом, но что именно у них было общего — понять сложно», — добавляет Гросс. Этим «общим» оказалось пространство В, о существовании которого никто изначально не подозревал.
Гросс считает пространство В чем-то вроде кальки. Взглянув на кальку под одним углом, вы увидите одну структуру (многообразие), посмотрев под другим углом — другую. Эта разница обусловлена наличием сингулярных точек в пространстве В, в которых T-дуальность перестает хорошо работать, что и приводит к изменениям.
Приблизительно такова современная картина зеркальной симметрии с точки зрения гипотезы SYZ. Одним из главных преимуществ этой гипотезы, по словам Строминджера, является то, что «происхождение зеркальной симметрии несколько прояснилось. Она пришлась по вкусу математикам, предоставив им геометрическую картину возникновения зеркальной симметрии — теперь они уже могли не ссылаться в своих исследованиях на теорию струн». В дополнение к геометрическому объяснению зеркальной симметрии наша гипотеза, по словам Заслоу, «предложила метод создания зеркальных пар».
Важно иметь в виду, что SYZ является всего лишь гипотезой, доказанной только в нескольких частных случаях, но не в общем виде. Несмотря на то что в своей первоначальной формулировке эта гипотеза, возможно, недоказуема, она была модифицирована в свете новых идей, соединив в себе, по словам Гросса, «все из области зеркальной симметрии».
Последнее утверждение многим может показаться спорным — и, возможно, даже преувеличенным. Но гипотеза SYZ уже использовалась, в частности, Концевичем и Яковом Сойбельманом из Университета штата Канзас для доказательства частного случая гомологической зеркальной симметрии, являющейся еще одной попыткой дать фундаментальное математическое описание зеркальной симметрии.
Теория гомологической зеркальной симметрии была впервые предложена Концевичем в 1993 году и на сегодняшний день находится на стадии разработки, привлекая к себе интерес как физиков, так и математиков. Изначальная формулировка зеркальной симметрии была по большому счету бессмысленной с точки зрения математиков, поскольку предполагала наличие двух различных многообразий, порождающих одинаковую физику. Но как объясняет Сойбельман, «в математике действительно нет понятия физической теории, связанной с многообразиями X и X'. Концевич же попытался придать этому утверждению математическую строгость», представив ее в виде, не привязанном к физическим понятиям.
Пожалуй, наиболее простым способом описания гомологической зеркальной симметрии является описание в терминах D-бран, хотя идея Концевича опередила их открытие на год или два. Физики представляют себе D-браны как подповерхности, к которым должны крепиться концы открытых струн. Теория гомологической зеркальной симметрии предсказывала существование D-бран, давая весьма детальное описание этих объектов, ставших одними из важнейших составляющих теории струн, точнее, М-теории, после второй струнной революции. В общем, это знакомая история, когда физическое открытие, в данном случае — зеркальная симметрия, дает толчок развитию математики, а математика, в свою очередь, сполна рассчитывается перед физикой.
Одной из главных идей, лежащих в основе гомологической зеркальной симметрии, является идея существовании двух различных типов D-бран — А-бран и В-бран. Эти термины введены Виттеном. Для зеркальной пары многообразий Калаби-Яу X и X' А-брана на многообразии X будет совпадать с В-браной на многообразии X'. Это краткое определение, по словам Эспинволла, «дало возможность математикам строго сформулировать понятие зеркальной симметрии. Из этой формулировки уже можно было получить все остальное».
Как говорит Майкл Дуглас, физик из Университета Стоуни-Брук, «представьте, что у вас есть два конструктора, детали которых имеют различную форму. Однако набор моделей, которые вы можете из них собрать, один и тот же». Это полностью аналогично соответствию между А-бранами и В-бранами, заявленному в теории гомологической зеркальной симметрии.
А-браны представляют собой объекты, описываемые в рамках так называемой симплектической геометрии, тогда как В-браны являются предметом исследования алгебраической геометрии. Мы уже слегка касались алгебраической геометрии, говоря о том, что она позволяет описывать геометрические кривые в алгебраических терминах и решать геометрические задачи при помощи алгебраических уравнений. Симплектическая геометрия содержит ключевое для многообразий Калаби-Яу (и не только для них) понятие кэлеровой геометрии. В то время как пространства в дифференциальной геометрии обычно описываются симметричным относительно диагонали метрическим тензором, в симплектической геометрии метрика симметричной не является — при переходе через диагональ знаки изменяются.
«Эти две области геометрии рассматривались как совершенно отдельные, поэтому стало большой неожиданностью, когда обнаружилось, что алгебраическая геометрия одного пространства эквивалентна симплектической геометрии другого, — говорит Эспинволл. — Соединение двух различных областей, установление того, что они в определенном смысле связаны через понятие зеркальной симметрии, можно считать одним из крупнейших событий в математике, потому что теперь методы, разработанные для одной области, можно применять и в другой. Обычно это в буквальном смысле устраняет все препятствия на пути, в конце которого вас ждет медаль Филдса».
В настоящее время теория гомологической зеркальной симметрии установила тесную связь с другими областями математики, в том числе и с гипотезой SYZ. На сегодняшний день, однако, не существует «строгой математической эквивалентности между двумя теориями, [но] они поддерживают друг друга, — утверждает Гросс. — И, если они обе верны, мы рано или поздно обнаружим их эквивалентность на определенном уровне».
Эта история еще не закончена. Мы до сих пор пытаемся выяснить, что же представляет собой зеркальная симметрия, с помощью наших исследований гипотезы SYZ, гомологической зеркальной симметрии и других подходов. Введение зеркальной симметрии привело к созданию новых направлений в математике, уже не имеющих ничего общего с самой зеркальной симметрией, и никто точно не знает, как далеко заведут нас эти исследования и где они в конечном итоге закончатся. Однако мы точно знаем, с чего они начались, — с открытия необычного свойства компактных кэлеровых многообразий, носящих название многообразий Калаби-Яу, — пространств, на которых более двух десятилетий назад был практически поставлен крест.