Глава 2
Молекулярные поры
Американский скакун
По кличке Импрессив,
Свинья, которую трясет лихорадка,
Стадо коз в Техасе, и кто-то
Из вас в первом ряду
Со своими пороками
Вздрогнут,
Почувствуют трепет в ионных каналах,
Увидев, как я падаю в бездну.
Джо Шапкотт. Рассуждения
Во время устного экзамена в Оксфордском университете примерно в 1890 г. студента спросили, может ли он объяснить феномен электричества. Тот, запнувшись, ответил, что знал это, но забыл. «Какая жалость! — заметил экзаменатор. — Доселе всего лишь двое знали, что такое электричество: Создатель и вы. А теперь остался один».
Сегодня все мы хорошо знакомы с электричеством, поскольку именно оно обеспечивает энергией наше индустриальное общество. Почти все, что мы используем, — транспорт, осветительная и коммуникационная аппаратура, в том числе и компьютер, на котором я набираю эти строки, приводится в действие электричеством. Намного менее известен тот факт, что мы тоже являемся своего рода электрическими машинами и что электрический ток лежит в основе самой жизни. Этот ток, в свою очередь, возникает в процессе функционирования ионных каналов. Чтобы понять, как связаны эксперименты Гальвани с лягушачьими лапками с нашей способностью лечить расстройства электрической активности организма вроде эпилепсии или неонатального диабета, которым страдает Джеймс, нужно выяснить, что такое ионные каналы и какова их роль в электрических процессах в клетках.
Более полутора столетий после Гальвани ученые искали методы измерения электрических импульсов нашей нервной системы и пытались понять, что они означают. Еще больше времени потребовалось для обнаружения ионных каналов, которые отвечают за электрическую активность, однако их открытие перевернуло наши представления. Идеи, которые я пыталась постичь в студенческие годы и которые не раз были причиной бессонных ночей (особенно накануне экзаменов), вдруг обрели предельную ясность. В этой главе мы перенесемся в сегодняшний день и познакомимся с современными представлениями о работе ионных каналов. Сначала, однако, полезно дать определение электричеству и понять, чем электричество в наших головах отличается от электричества в розетке. Святая троица
Электричество представляет собой форму энергии, связанную с электрическим зарядом — одним из фундаментальных свойств внутриатомной материи. Электрический ток, который течет по проводам в наших домах — и по нашим нервным волокнам, — описывается количественно с помощью трех базовых единиц: ампера (А), вольта (V) и ома (Ω). Они названы так в честь трех выдающихся европейских физиков XVIII в.: француза Андре Мари Ампера, итальянца Алессандро Вольта и немца Георга Ома. Ток измеряют в амперах, сопротивление току — в омах, а напряжение, силу, которая вызывает электрический ток, — в вольтах.
Законы течения электричества через проводник нередко объясняют с помощью аналогии — законов течения воды в трубе. Ток зависит от интенсивности движения потока заряженных частиц, при этом одному амперу соответствует прохождение примерно шести квинтиллионов (6 × 1018) частиц в секунду.
Сопротивление — это мера легкости или затрудненности потока. Сужение в трубе ограничивает поток воды, а увеличение диаметра трубы приводит к усилению ее потока. В электрической цепи материалы, которые обладают низким сопротивлением току, например металлы, называют проводниками, а материалы, препятствующие течению электричества, например бумагу или воздух, называют изоляторами. Прикоснитесь к оголенному проводнику электрической изгороди — и вы получите неприятный удар током, а прикосновение к изолированной ручке на калитке в этой изгороди ничем вам не грозит.
Напряжение между двумя точками эквивалентно перепаду давления, которое заставляет воду течь из одного места в другое. По существу это сила, которая создает электрический ток. Его также называют разностью электрических потенциалов (или просто потенциалов). Если две точки не соединены друг с другом, то вода не будет течь между ними. Аналогичным образом электрический ток течет только тогда, когда цепь замкнута. Именно поэтому между грозовой тучей и землей может возникать огромное напряжение, но ток не будет течь до тех пор, пока молния не пробьет разделяющий их слой воздуха. Это также объясняет, почему электроны не движутся по проводнику, пока электрическая цепь не замкнута, иными словами, почему ваша настольная лампа не горит до тех пор, пока вы не нажмете на выключатель, связывающий провода. Точно так же, как повышение давления усиливает течение воды, повышение напряжения увеличивает ток. При повышении подаваемого на лампу напряжения, например, лампа светит ярче.
Земля имеет наименьший потенциал, поэтому ток, как и вода, которая течет в сторону более низкой точки, всегда течет в направлении земли. Люди обнаружили это давно. В 1785 г. Жозеф-Эньян де Лафон был озадачен, обнаружив, что в опыте с сильно заряженной лейденской банкой и 60 взявшимися за руки людьми удар электрического тока ощущали всего лишь шесть человек в начале цепочки. Почему ток останавливался на шестом человеке, было загадкой. Возможно, его организм обладал особыми качествами. Возникла гипотеза, что молодой человек, стоявший шестым в цепочке, был наделен «не всем, что полагалось мужчине», иными словами, он обладал не всеми естественными атрибутами. По Парижу быстро разнесся слух о том, что евнухи не проводят ток.
Герцог Шартрский, обладавший научным складом ума, потребовал доказательств. Для проверки предположения был проведен эксперимент на трех королевских вокалистах с понятными опасениями как со стороны испытуемых, так и тех, кто обладал всеми мужскими достоинствами. К всеобщему удивлению, все три кастрата в полной мере ощутили удар током. Загадка разрешилась лишь после многократного повторения эксперимента, когда заметили, что люди, дальше которых электрический разряд не распространялся, стояли на влажной почве. Поскольку сырая земля лучше проводит электричество, чем человеческое тело, ток уходит в землю. Именно по этой причине вы получаете удар током при случайном прикосновении к оголенному проводу: земля имеет более низкий потенциал, чем провод в вашей руке, и ток течет через ваше тело в землю.
Амперы, вольты и омы неразрывно связаны друг с другом. Эту связь открыл Георг Ом, он сформулировал известный закон, который гласит, что ток (I) равен напряжению (V), деленному на сопротивление (R), или, если записать это в виде формулы: I = V/R. Иначе говоря, если сопротивление остается неизменным, то повышение напряжения приводит к увеличению силы тока. Аналогичным образом если сопротивление падает, а напряжение остается неизменным, то сила тока возрастает. И так далее. Эта простая формула, которая выражает закон Ома, является ключом к пониманию того, как работают нервы — и электричество. Разные, как два полюса
Впрочем, между электричеством, обеспечивающим энергией наш организм, и электричеством, которое освещает наши города, есть фундаментальное различие. Электричество, подаваемое в наши дома, представляет собой поток электронов. Эти неделимые элементарные частицы имеют отрицательный заряд, и, поскольку противоположные заряды притягиваются друг к другу (а одноименные заряды отталкиваются), электроны всегда текут из области с отрицательным зарядом к области с положительным зарядом. Несколько сбивает с толку то, что за направление тока принимают направление потока положительных зарядов, т. е. мы считаем, что ток в проводе движется в направлении, противоположном тому, в котором текут электроны!
В отличие от этого практически все токи в живых существах представляют собой потоки ионов — атомов, имеющих электрический заряд. Токи в нашем организме обусловлены движением пяти основных видов заряженных частиц. Четыре из них имеют положительный заряд — натрий, калий, кальций и водород (протон), а один, хлор (хлорид-анион), — отрицательный заряд. В силу того, что ионы несут электрический заряд, их движение создает электрический ток. В случае положительных ионов ток течет в том же направлении, что и поток ионов, а в случае отрицательных ионов (как и электронов) — в противоположном направлении.
Стоит также отметить, что ток в электрической цепи течет вдоль проводника. В отличие от этого ионные токи, обеспечивающие передачу нервных импульсов, текут через клеточные мембраны внутрь клеток и из них. Таким образом, хотя электрические импульсы распространяются вдоль нервных и мышечных волокон, ионные токи, которые генерируют их, проходят под прямым углом к направлению распространения импульса.
Еще одно различие электрических сигналов в наших головах и в сети электроснабжения домов заключается в скорости их распространения. Электрический сигнал в проводах распространяется почти со скоростью света, составляющей 300 000 км/с. Именно поэтому свет загорается сразу же после щелчка выключателя, а телефоны и Интернет обеспечивают практически мгновенную связь по всему земному шару. Нервные импульсы по сравнению с этим ужасно медленные, самые быстрые из них распространяются со скоростью всего 0,12 км/с (120 м/с). Даже самый сообразительный из нас не может думать со скоростью света.
Помимо того, что генерируемые нами электрические импульсы медленные, они еще и очень слабые. Если электрическому чайнику для работы нужен ток силой три ампера, то сила токов, заставляющих сокращаться сердце, составляет всего несколько миллионных долей ампера. Наконец, хотя энергия необходима в обоих случаях, ее источник — батарея, если хотите, — производит ток совершенно разными способами, как будет показано далее.
Эти различия между животным электричеством и электричеством, подаваемым в наши дома, сейчас довольно легко перечислить, однако на то, чтобы выявить их, потребовались многие годы. Хотя фундаментальные свойства электричества были известны уже в начале XIX в., мы лишь в последние 60 лет стали понимать происхождение биоэлектричества и всего 15 лет назад узнали, что представляют собой молекулярные структуры (ионные каналы), с которыми связана электрическая активность клеток нервной и мышечной ткани. Кирпичики жизни
Наш организм — не более чем скопление клеток, миллионов и миллионов клеток, число которых так же велико, как и число звезд в галактике. Они очень разнообразны — клетки мышечной ткани, клетки мозга, крови и т. д., имеют разные формы и размеры, но все равно это один и тот же фундаментальный элемент организма. Роберт Гук открыл их в 1665 г., когда рассматривал небольшой кусочек пробки под микроскопом. Он назвал увиденное образование клетками, поскольку они ассоциировались у него с крошечными кельями, в которых жили монахи. Чтобы лучше понять, на что они похожи, представьте себе пчелиные соты, сильно уменьшенные в размере.
Клетки изобилуют молекулами, которые вступают в сложные реакции, связанные с синтезом белков, воспроизводством ДНК и генерированием энергии. Однако для получения представления об электрических свойствах клеток нам достаточно рассмотреть процессы, происходящие на их поверхности, поскольку именно там возникает разность потенциалов и передаются нервные импульсы.
На этой схеме представлено строение клеточной мембраны. На ней видны два слоя липидных молекул и мембранные белки, в частности, ионные каналы и насосы. K+ — принятое в науке обозначение иона калия, Na+ — иона натрия.
Поверхность клетки представляет собой мембрану, которая окружает клеточное содержимое и служит границей с внешним миром наподобие стенки мыльного пузыря. Мембрана выстроена из жиров (научное название — липиды), а следовательно, она непроницаема для большинства водорастворимых веществ. Это следует из того простого факта, что жиры и вода не смешиваются. Любой, кто делал когда-либо заправку из уксуса и оливкового масла для салата, знает, что через некоторое время ингредиенты расслаиваются — внизу оказывается уксус, а наверху более легкое масло. Молекулы фосфолипидов, образующие клеточную мембрану, имеют притягивающие воду (гидрофильные) фосфатные головки и «любящие воду» (гидрофобные) липидные хвосты. Эти молекулы организуются и образуют двухслойную мембрану так, что их водоотталкивающие хвосты оказываются внутри между слоями фосфатных головок. Не думайте, однако, что мембранные липиды такие же твердые, как сливочное масло, — по консистенции они больше напоминают машинное масло, и белки, погруженные в них, плавают и должны каким-то образом крепиться к цитоскелету, чтобы занимать правильное положение.
Растворы внутри наших клеток и клеток всех других организмов на Земле богаты ионами калия и бедны ионами натрия. В отличие от этого кровь и другие внеклеточные жидкости, в которых находятся наши клетки, бедны ионами калия и богаты ионами натрия. За счет перепадов ионного состава генерируются электрические импульсы в наших нервных и мышечных клетках, поскольку они, как и перепад в уровнях воды перед плотиной и за ней, позволяют эффективно накапливать потенциальную энергию. Стоит открыться шлюзам, как тут же начинает высвобождаться энергия в результате перераспределения ионов, стремящихся к выравниванию концентраций с обеих сторон мембраны. Это движение ионов и порождает нервные и мышечные импульсы.
Трансмембранные градиенты концентрации натрия и калия (т. е. разница в их концентрациях внутри и вне клеток) поддерживаются крошечным молекулярным двигателем, так называемым натриевым насосом, пронизывающим клеточную мембрану. Этот белок выкачивает избыточные ионы натрия, которые просачиваются в клетку, и заменяет их на ионы калия. Если насос прекращает работать, то градиенты концентраций ионов постепенно снижаются, и когда они полностью исчезают, перестают генерироваться электрические импульсы точно так же, как разряженный аккумулятор перестает приводить в действие стартер вашего автомобиля. Как следствие, органы чувств, нервы, мышцы, в общем, все клетки организма просто впадают в ступор. Именно это происходит, когда мы умираем. Поскольку у нас больше нет энергии, чтобы питать натриевый насос и поддерживать перепад концентраций ионов на клеточных мембранах, наши клетки быстро прекращают функционировать. И хотя внешние разряды электричества способны создавать электрические импульсы в нервных и мышечных клетках, они не могут восстановить градиент концентрации ионов на клеточных мембранах после того, как насосы перестают работать. Вот почему нам не удается реанимировать мертвое тело с помощью электричества, и вот почему искра жизни отличается от электричества, подаваемого в наши дома.
Поддержание градиентов концентрации ионов требует больших затрат энергии, поскольку электричество не бывает дешевым, даже когда оно генерируется в наших организмах. Только представьте себе, что около трети вдыхаемого нами кислорода и половины потребляемой пищи идет на создание градиентов концентрации ионов на клеточных мембранах. Один лишь мозг использует около 10 % вдыхаемого кислорода для поддержания работы натриевого насоса и подзарядки аккумуляторов нервных клеток. Ничего не поделаешь — умственная деятельность очень энергоемка. Замечательные физиологические жидкости
Почему наши клетки наполняются именно ионами калия, не совсем понятно. Проще всего предположить, что изначально клетки развивались в растворе с высоким содержанием калия. Если им ничто не мешает, липиды самопроизвольно образуют липосомы — крошечные наполненные жидкостью сферы, окруженные оболочкой из фосфолипидов. Не исключено, что такие липидные пленки представляли собой прототип мембран и липосомы, которые появлялись в результате их образования, были предшественниками настоящих клеток. Предположительно более трех с половиной миллиардов лет назад липосомы захватили самовоспроизводящиеся молекулы, такие как РНК или ДНК1, и превратились в первые клетки.
Жидкость внутри этих первых примитивных клеток неизбежно должна была иметь такой же состав, как и жидкость, которая их окружала. Таким образом, высокая внутренняя концентрация калия, характерная для всех клеток, — от простейших бактерий до самых сложных организмов — может отражать состав «первичного бульона». Загадка, однако, остается. Где находились эти древние воды, насыщенные калием? Одна из современных популярных теорий предполагает, что жизнь зародилась в «черных курильщиках» на дне океана — гидротермальных источниках, которые выбрасывают богатую минералами перегретую воду. С точки зрения физиолога, это маловероятно, поскольку в докембрийских морях, как и в нынешних, всегда было много натрия. Лично я придерживаюсь точки зрения Чарльза Дарвина, который считал, что жизнь зародилась миллиарды лет назад в «небольшом теплом пруду». Неглубокие заводи, где скапливались молекулы органических веществ и куда поступали ионы калия из окружающих горных или глинистых пород, вполне могли быть местом рождения первых клеток.
В какой-то момент очень далекого прошлого разрозненные клетки обнаружили, что совместная жизнь дает преимущества в естественном отборе, и в результате появились многоклеточные организмы. Поскольку внеклеточный раствор, в котором находятся наши клетки, богат натрием, есть вероятность, что первые многоклеточные организмы зародились в море, представляющем собою по большому счету раствор хлорида натрия (поваренной соли). Очень заманчиво думать, что внутриклеточные растворы и внеклеточные жидкости несут отпечаток нашей истории и говорят о том, где именно зародилась жизнь. Пограничный контроль
Наличие клеточной мембраны дает множество преимуществ. Молекулы больше не рассеиваются случайным образом, а удерживаются внутри клетки и, что более важно, взаимодействуют друг с другом. Клетки могут становиться специализированными и выполнять разные функции, например образовывать мышечную ткань, печень и нервные волокна. Подобно крепостной стене средневекового города мембрана защищает клетку от токсинов в ближайшем окружении и ограничивает поступление и выделение различных веществ, поскольку липиды, из которых она выстроена, непроницаемы для большинства субстанций. В результате появляется необходимость в строго охраняемых воротах, которые впускают в клетку жизненно важные питательные вещества и выпускают из нее отходы жизнедеятельности.
Электрохимическая битва за калий
В состоянии покоя на мембране всех клеток существует разность потенциалов — внутренний потенциал обычно на 60–90 мВ более отрицателен, чем наружный. Потенциал покоя возникает в результате противоборства концентрационного и электрического градиентов на клеточной мембране, которые воздействуют на ионы калия.
В состоянии покоя многие калиевые каналы в клеточной мембране открыты. Поскольку концентрация ионов калия внутри клетки выше, чем снаружи, эти ионы уходят из клетки, понижая градиент концентрации, а в результате того, что ионы калия заряжены положительно, их исход приводит к потере положительного заряда. Иначе говоря, внутри клетки начинает накапливаться отрицательный заряд. В какой-то момент внутриклеточный отрицательный заряд начинает препятствовать выходу ионов калия. Он притягивает ионы калия и останавливает их утечку. Мембранный потенциал, при котором химическая сила, выталкивающая ионы калия из клетки, и электрическая сила, удерживающая ионы калия, уравновешиваются, называют равновесным потенциалом.
Если бы мембрана была проницаема только для ионов калия, то мембранный потенциал покоя в точности соответствовал бы калиевому равновесному потенциалу. Однако в реальном мире не все так просто, и в большинстве клеток имеются ионные каналы других типов, которые позволяют другим положительным ионам проникать внутрь и таким образом смещают потенциал покоя в положительную сторону.
Возникновение потенциала покоя приводит к тому, что клетка начинает действовать как крошечная батарея, в которой электрические заряды (в форме ионных градиентов) разделяются неэлектропроводной липидной мембраной. Накопленная в ней энергия используется для формирования электрических импульсов в нервных и мышечных волокнах.
Такими воротами являются высокоспециализированные транспортные белки. Их великое множество, однако самыми важными следует считать ионные каналы. Как заметил однажды Примо Леви, «все знают, что такое канал: он направляет поток воды между двумя непроницаемыми берегами от истока к устью». Каналами называют и другие направляющие поток структуры, включая и те, что пропускают потоки ионов через клеточную мембрану. По существу ионный канал — не более чем крошечная белковая пора. Она имеет центральное отверстие, через которое проходят ионы, и одни или несколько ворот, открывающихся и закрывающихся по мере необходимости для регулирования движения ионов. Когда ворота открыты, ионы, например натрия и калия, входят в клетку или выходят из нее со скоростью более миллиона ионов в секунду. Когда ворота закрываются, поток ионов прекращается.
Самые большие ионные каналы — это просто гигантские отверстия, настолько крупные, что могут пропускать сразу множество ионов, через них могут проходить как отрицательно заряженные ионы (анионы), так и положительно заряженные ионы (катионы), а также довольно крупные молекулы. Каналы такого типа встречаются сравнительно редко, и нетрудно понять почему — если они откроются, то градиенты концентрации ионов, так заботливо создаваемые и поддерживаемые клеткой, сразу же исчезнут, и клетка погибнет. Если говорить откровенно, то некоторые бактериальные токсины убивают клетки именно таким образом. Большинство каналов, однако, избирательно пропускают ионы через свои поры. Хотя среди них есть такие, которые открывают ворота для любых катионов (или для любых анионов), большинство намного более селективны. Калиевый канал, например, позволяет проходить только ионам калия и не пропускает ионы натрия и кальция, а натриевый канал дает дорогу только ионам натрия, закрывая путь ионам калия или кальция. Как вы уже, наверное, поняли, обычно каналы называют по тем ионам, которые они пропускают.
Ионы выбирают путь наименьшего сопротивления и движутся в направлении градиента концентрации, т. е. из области высокой концентрации в область низкой концентрации. Снаружи клетки количество ионов натрия намного выше, чем внутри, поэтому ионы натрия текут внутрь клетки, когда ворота натриевых каналов открыты. В свою очередь ионы калия, поскольку внутри клетки их намного больше, чем снаружи, стремятся покинуть клетку, когда калиевые каналы открыты. В силу того, что ионы заряжены, их поток приводит к возникновению электрического тока. Именно эти токи, рождаемые движущимися через каналы ионами, лежат в основе нервных и мышечных импульсов и регулируют биение наших сердец, работу мышц и генерирование электрических сигналов в мозге, когда мы думаем. По существу это процесс преобразования энергии, запасенной в форме градиентов концентрации, в электрические импульсы в нервных и мышечных волокнах. Пока не увидишь — не поверишь
Учитывая важность ионных каналов, может показаться странным, что об их существовании даже не подозревали до середины прошлого столетия, а еще в начале 1970-х гг. идея о том, что ионы проходят через мембрану сквозь специализированные белковые поры, была не более чем предположением. Для прямой демонстрации их существования нужно было измерить ток, который течет через отдельный канал, когда он открыт. Сделать это было непросто, поскольку такой ток чрезвычайно мал и для измерений требовалось высокоспециализированная электронная аппаратура. Чтобы понять, насколько ток, текущий через отдельно взятый ионный канал, ничтожен, представьте себе, что он составляет примерно триллионную часть того тока, который питает ваш электрочайник, — всего несколько пикоампер.
Слева: здесь показано, как при использовании метода локальной фиксации потенциала стеклянный электрод изолирует отдельный канал на участке клеточной мембраны и позволяет измерять ничтожные токи, которые текут через канал, когда он открыт. Справа: график тока в отдельном канале (сверху). Когда канал открывается (снизу), ток, создаваемый движущимися через него ионами, отображается как смещенная вниз линия. Канал, показанный ниже, закрывается, когда к нему присоединяется внутриклеточная АТФ, и открывается, когда АТФ отсоединяется.
Проблема была решена с помощью оригинальной методики, разработанной двумя немецкими учеными — Эрвином Неером и Бертом Закманом. За это достижение Неер и Закман были удостоены Нобелевской премии. Поистине инновационные направления в науке нередко возникают на стыке разных дисциплин, и сочетание талантов этих двух ученых служит прекрасным подтверждением данного тезиса. Неер был физиком, Закман — медиком, поэтому они подходили к проблеме с разных сторон. Их сотрудничество обеспечило широту взглядов, необходимую, чтобы понять, куда может привести предложенная ими технология, и достаточное внимание к деталям, которое требуется для отработки метода. Как выразился их коллега Дэвид Кохун, они являются «настоящими учеными» — скромными, непретенциозными, смелыми и вдохновленными.
Неер и Закман рассудили, что если ионные каналы реально существуют, то наверняка есть способ, позволяющий регистрировать текущие через них ничтожные токи, и взялись в начале 1970-х гг. за его поиск. Они решили использовать тончайшую наполненную жидкостью стеклянную трубку в качестве измерительного электрода. Кончик этой трубки должен был при осторожном прикосновении к поверхности клетки изолировать отдельный ионный канал на участке мембраны, попавшем под него. В случае успеха это позволило бы измерять токи, текущие через канал, когда он открывается. Метод назвали «локальная фиксация потенциала», поскольку он давал возможность регистрировать ток, текущий через крошечный участок клеточной мембраны.
Чтобы добиться успеха, Нееру и Закману понадобились годы. Дело в том, что им требовалась специальная аппаратура, способная усиливать очень слабые сигналы, а она не только не выпускалась серийно, ее просто не существовало. Поэтому ученым пришлось создавать усилители самим. Каждый раз при появлении какого-нибудь технического новшества они переделывали свою аппаратуру и снова пытались провести измерения. Ключевой проблемой был шум, в котором терялся нужный им ничтожный сигнал. Электрические цепи (в том числе и биологические) всегда генерируют шум вроде того шипения и свиста, которые мы слышим в старом радиоприемнике. Неер и Закман перепробовали массу способов снижения фонового шума, и их упорство принесло результат. Примерно в 1974 г. им удалось выделить токи, возникающие в отдельно взятом канале, — они выглядели на графике как крошечные прямоугольные импульсы, которые возникали в результате течения ионов через пору каждый раз, когда канал открывался. Некоторое время ученые не осмеливались сообщать о полученных результатах, поскольку токи регистрировались только при самых благоприятных условиях, но в конце концов, проделав огромную работу, они убедились в их надежности и решились на публикацию.
Их статья произвела фурор, однако из-за сложности предложенного метода мало кто попытался тут же воспроизвести результат. Фоновый шум по-прежнему оставался проблемой и препятствовал измерению малых токов. В течение следующих двух лет ученые безуспешно пытались повысить качество измерений — никакие ухищрения не помогали. А потом совершенно неожиданно пришла идея относительно того, что нужно сделать. Иногда при проведении экспериментов шум резко падал — настолько низко, что график тока превращался в плоскую линию. Полагая, что кончик электрода забился инородными частицами, ученые немедленно прекращали эксперимент (и выплескивали младенца вместе с водой). Однако в очень редких случаях эксперимент продолжался, и тогда ионные токи проявлялись с удивительной ясностью. Причины такого явления они тогда не знали, а происходило это потому, что клеточная мембрана очень плотно прижималась к стеклянному электроду, устраняя практически полностью фоновый шум. Таким образом, становилось возможным скачкообразное повышение разрешения измерительной системы.
Надежно воспроизвести подобное идеальное измерение не удавалось вплоть до января 1980 г., когда Неер понял, что при использовании свежего электрода шансы на плотное прилегание к мембране повышаются. В приподнятом настроении он позвонил своему коллеге и сказал: «Я знаю, как добраться до каналов!» История на этом, однако, не закончилась — даже свежие пипетки не всегда плотно прилегали к мембране. Удаление инородных частиц с клеточной мембраны с помощью ферментов или использование клеток искусственно выращенной ткани, которые заведомо имеют очень чистые мембраны, повышало вероятность успеха. Окончательным решением проблемы стало создание небольшого разрежения в электроде. Это, по всей видимости, приводило к частичному втягиванию мембраны в электрод и обеспечивало более плотное прилегание. Чтобы дойти до этого, потребовалось почти 10 лет.
Настоящие прорывы в науке случаются намного реже, чем можно подумать, глядя на сообщения в газетах, и происходят они не в одночасье, а обычно требуют долгих лет упорного труда, как показывает эта история. Усовершенствованный метод локальной фиксации потенциала был в подлинном смысле революционным. Очень быстро выяснилось, что он намного более универсален, чем представлялось первоначально. Удивительная стабильность контакта между стеклянной пипеткой и клеточной мембраной позволяла изолировать небольшие участки мембраны без ее повреждения и исследовать активность каналов на них. Этот метод открывал возможность изучения любых клеток организма, недоступную прежде, поскольку более старые технологии приводили к слишком сильному повреждению клеток.
Статья команды Неера и Закмана, содержавшая подробное описание метода осуществления измерений с высоким разрешением, взбудоражила научное сообщество и быстро стала классической. Практически на следующий день все захотели попробовать локальную фиксацию потенциала. Неер и Закман великодушно распахнули двери своих лабораторий, и весь мир отправился в Гёттинген осваивать метод. Даже тогда это было непростым делом, поскольку аппаратуру приходилось создавать самостоятельно. Я, например, не одну неделю билась над сложными электрическими схемами, держа паяльник в одной руке и утирая слезы другой. К счастью эта пытка продолжалась недолго — уже через несколько лет каждый мог купить отличные серийно выпускаемые усилители (если, конечно, у него были для этого деньги).
Теперь, когда можно было видеть электрический сигнал канала, настало время поиска ответов на самые разные вопросы. Сколько видов каналов существует? Какие функции они выполняют? Как именно они работают — какие молекулярные процессы в них происходят, когда они открываются и закрываются, как происходит отбор ионов, которые проходят через канал? Генетический инструментарий
Практически в то же время, когда Неер и Закман дали нам возможность видеть ионные каналы в действии, произошла другая научная революция. Информация для синтеза каждого белка, который есть в нашем организме, закодирована в ДНК, и разработка новых методов молекулярной биологии сделала возможной идентификацию и манипулирование последовательностью ДНК, отвечающей за отдельный белок. Белки строятся из линейной цепи аминокислот, однако — подобно бусам, упавшим на пол, — они свертываются и приобретают значительно более сложные формы. Одни белки могут встраиваться в мембрану, а другие располагаются внутри или снаружи клетки. Белок может даже изгибаться так, что часть его структуры переворачивается, или, перефразируя Т. С. Элиота, конец становится началом. Трехмерная форма, которую принимает белок, имеет критически важное значение — ионные каналы должны образовывать проход, через который текут ионы, сигнальные молекулы должны удобно стыковываться с их целевыми рецепторами, структурные белки должны плотно прилегать друг к другу. Иногда несколько белковых цепочек образуют еще более сложную структуру. Калиевые каналы, например, как правило, формируются из четырех одинаковых элементов, которые связаны друг с другом так, что образуют центральную пору, пропускающую ионы.
В настоящее время невозможно точно сказать, как из простой последовательности аминокислот возникает трехмерная структура белка. Однако для полного понимания работы канала важно иметь некоторое представление о том, на что она похожа. Отправной точкой на пути к пониманию взаимосвязи между структурой и функцией стало знание последовательности ДНК. Когда известен генетический код белка, его можно изменять и получать каналы «на заказ», подстроенные под вопрос, который вас интересует. Хотите знать, что делает конкретная аминокислота? Нет ничего проще: замените ее на другую и посмотрите, что произойдет. Именно так и происходит сегодня. Теперь, когда мы знаем полную последовательность генома человека (и многих других биологических видов), последовательность ДНК нужного вам белка можно найти в онлайновой базе данных и заказать ее у какой-нибудь коммерческой компании примерно за £1000. Вы получите ее в течение нескольких дней — невидимую невооруженным глазом каплю на кусочке фильтровальной бумаги. В 1980-х гг., однако, ситуация была не такой простой. Последовательность ДНК нужно было определять своими силами, а на это могла уйти масса времени, в некоторых случаях многие-многие годы. Игольное ушко
Так или иначе, соединение молекулярной биологии с новыми методами измерения электрических сигналов постепенно начало приподнимать завесу тайны над проблемой избирательности ионных каналов — над тем, каким образом каналы различают ионы. Как оказалось, учитывая, что одноименные заряды отталкиваются, а разноименные притягиваются, на входе во многие каналы формируются заряженные кольца, которые предотвращают проникновение ионов или помогают ему. Так, с помощью отрицательного заряда, который притягивает катионы и отталкивает анионы, канал может пропускать все катионы и блокировать вход для всех анионов. Критическая проблема, которая возникает в случае большинства ионных каналов, заключается в том, как обеспечить высокую селективность без снижения скорости прохождения ионов через пору. Один из самых сложных вопросов касался механизма, позволявшего калиевым каналам пропускать ионы калия, но закрывать вход для значительно меньших по размеру ионов натрия, которые также имеют положительный заряд. Эта загадка не давала ученым покоя много лет. Конечно, существовала расплывчатая идея, грубая модель работы канала, основанная на массе функциональных экспериментов, однако в реальности не хватало связи между этой информацией и структурным пониманием. Как на самом деле выглядел калиевый канал? Загадка была окончательно решена в 1998 г., когда Род Маккиннон добился потрясающего прорыва: выращивая кристаллы белка калиевого канала и просвечивая их рентгеновскими лучами, он смог впервые увидеть каждый атом калиевого канала. Ионы калия удалось поймать «на месте преступления» — в различных точках внутри поры, так что их путь через мембрану был виден во всех деталях.
Человек хрупкого сложения с лицом эльфа, Маккиннон — один из самых талантливых ученых, которых я знаю. Он твердо вознамерился решить загадку каналов и намного раньше других понял, что единственный способ добиться этого — напрямую разобрать структуру канала, атом за атомом. Подобная задача была не для слабых духом, никто не делал этого ранее, никто реально не знал, как сделать это, а большинство вообще не верило, что такое может быть сделано даже в ближайшем будущем. Технические сложности казались непреодолимыми, да к тому же Маккиннон был далек от профессии кристаллографа. Однако он не только блестящий ученый, но и бесстрашный, целеустремленный и чрезвычайно трудолюбивый человек (он славится своей способностью работать круглые сутки, урывая всего несколько часов на сон между экспериментами). Трудности его не останавливали, он сменил сферу своей научной деятельности и место работы — оставил должность в Гарварде и перебрался в Рокфеллеровский университет, поскольку считал, что условия там лучше. Некоторые думали, что он просто сошел с ума. В ретроспективе, впрочем, видно, что его решение было правильным. Всего через два года Маккиннона встретили бурной овацией — беспрецедентное явление для научного заседания, — когда он впервые представил структуру калиевого канала. Ионные каналы снова и снова приводили в Стокгольм2.
Рентгеновская структура показывала в мельчайших деталях, как работает калиевый канал, как он обеспечивает очень быстрый перенос ионов калия, настолько быстрый, словно на пути ионов не было никаких препятствий, и одновременно не пропускает более мелкие ионы натрия. Калиевые каналы, как оказалось, имели специальные «селективные фильтры» — короткие зоны, в которых пора сужается настолько, что проникающие ионы взаимодействуют со стенками. Попросту говоря, ширина такой зоны достаточна, чтобы протиснулся ион калия, но ничто более крупное пройти через нее не может. Фактически проход настолько мал, что калию приходится сбрасывать оболочку из молекул воды. В растворах все ионы окружены толстым слоем воды, и нужно немало усилий, чтобы освободиться от нее. Калий довольно легко освобождается от оболочки, поскольку селективный фильтр имитирует объятия водяной оболочки. С натрием же дело обстоит иначе. Хотя натрий довольно мал, чтобы проскользнуть через пору в обезвоженном состоянии, для удаления воды требуется слишком большое усилие — намного большее, чем энергия, которая генерируется в результате сжатия селективного фильтра, — поэтому он так и остается в водяной рубашке. А вместе с рубашкой натрий просто слишком велик, чтобы войти в пору. Открытое и закрытое состояние
Ионные каналы — шлюзы клетки. Их важнейшее свойство состоит, пожалуй, в том, что они открываются и закрываются, регулируя движение ионов, а самое главное, процесс открывания и закрывания (их «воротный» механизм) жестко контролируется посредством присоединения внутриклеточных или наружных химических веществ, механического напряжения или изменения разности потенциалов на клеточной мембране.
Нервные клетки общаются друг с другом через химические посланники, известные как медиаторы, которые взаимодействуют со специализированными ионными каналами в мембране целевой клетки. Медиатор присоединяется к определенному участку белка канала, входя в него, как ключ в замок. Это вызывает конформационное изменение белка канала, который открывает пору и позволяет ионам проходить через нее. Мы пока еще мало знаем о том, как происходит такое изменение формы, или о том, каким образом присоединение химического вещества в определенном месте приводит к структурному изменению другой части белка, которая может находиться на значительном удалении. Такой механизм управления каналами имеет очень большое значение не только потому, что он обеспечивает передачу информации между клетками, но и потому, что многие медицинские препараты и яды воздействуют на активность каналов (и, таким образом, на клеточные функции), присоединяясь к тому же участку, что и естественный медиатор, и блокируя или имитируя действие этого медиатора.
Например, яд кураре, который южноамериканские индейцы наносят на стрелы, присоединяется к ионным каналам, участвующим в процессе передачи импульсов в нервных и мышечных волокнах, и блокирует действие естественного медиатора, вызывая паралич. А галюциноген ЛСД имитирует действие медиатора серотонина, вызывая чрезмерную стимуляцию определенных нейронов мозга. Мой любимый АТФ-зависимый калиевый канал закрывается при присоединении АТФ, генерируемого при расщеплении глюкозы, — именно таким образом метаболизм глюкозы приводит к закрыванию канала и секреции инсулина. Если связывающий участок изменяется, например в результате мутации, как в случае Джеймса, то АТФ не может присоединиться, АТФ-зависимый калиевый канал не закрывается, а инсулин не вырабатывается. Итогом является диабет.
При «потенциал-зависимом» механизме управления (воротном механизме) канал должен быть чувствительным к изменению потенциала электрического поля на мембране. На мембране всех клеток существует разность потенциалов, причем внутренний потенциал примерно на 70 мВ более отрицателен, чем наружный. Когда нерв генерирует электрический импульс, этот внутренний потенциал резко возрастает приблизительно на 100 мВ и на короткое время становится положительным по отношению к наружному. Сотня милливольт может показаться незначительной величиной, однако это не так, поскольку мембрана очень тонкая. С учетом толщины мембраны напряженность электрического поля, действующего на канал, может быть огромной — порядка 100 000 В/см. Напряжение бытовой сети электроснабжения в Великобритании составляет 240 В, и если вы по неосторожности прикоснетесь к оголенному проводу (надеюсь, что с вами этого никогда не случится), то получите представление о том, какой удар током получает ионный канал, когда нерв генерирует импульс. Если посмотреть на проблему под таким углом, то способность изменения потенциала преобразовывать конформацию белка и переводить его из одного состояния в другое уже не вызывает удивления. О том, что каналы реагируют на напряженность электрического поля, мы узнали всего 25 лет назад, и точные детали этого явления все еще горячо обсуждаются.
В состоянии покоя потенциал-зависимые натриевые и калиевые каналы клеток нервной и мышечной ткани находятся в закрытом состоянии под действием отрицательного мембранного потенциала. Они открываются только тогда, когда потенциал смещается в положительную сторону, и если это происходит, то генерируется электрический импульс. О том, как об этом узнали и как распутывали загадки, связанные с работой нервов и мышц, рассказывается в следующих главах.