Книга: Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Назад: Часть II Неожиданная атака
Дальше: 11 Датское сопротивление

10
Как Стивен потерял свои биты и не знал, где их найти

В моем изложении событий есть что-то неправдоподобное — следовательно, я допустил ошибку.
— Шерлок Холмс
В газетах порой пишут, что иракская война тянулась дольше Второй мировой. Журналисты, конечно, имели в виду, что война в Ираке была продолжительнее периода активного участия Америки во Второй мировой войне, которая началась осенью 1939 года и закончилась лишь в 1945-м. Американцы склонны забывать, что ко времени атаки на Перл-Харбор шел уже третий год войны.
Возможно, я допускаю ту же эгоцентричную ошибку, говоря, что Битва при черной дыре завязалась в 1983 году, в мансарде у Вернера Эрхарада. Атака Стивена на самом деле началась в 1976 году, однако не бывает сражения без противника. Его нападение было в основном проигнорировано, хотя это и была прямая атака на один из самых надежных принципов физики — закон, утверждающий, что информация никогда не исчезает, или, в краткой форме, закон сохранения информации. Ввиду его исключительной важности для всего дальнейшего изложения давайте рассмотрим закон сохранения информации еще раз.
Информация навсегда
Что означает уничтожение в применении к информации? В классической физике ответ прост: информация уничтожается, если в будущем теряются следы прошлого. Как ни удивительно, это может происходить даже в случае детерминистических законов. Чтобы показать это, давайте вернемся к трехсторонней монете, с которой мы играли в главе 4. Три стороны монеты обозначались Р, О и Б (решка, орел и боковая сторона). В той главе два детерминистических закона я описал следующими диаграммами:
Оба закона обладают свойством детерминистичности, так что, каково бы ни было состояние монеты, можно с полной уверенностью указать ее следующее и предыдущее состояния. Сравним это с законом который описывается следующей диаграммой:
или формулой
Р=О О=Р Б=О
В словесной формулировке: если в один момент монета лежит решкой, то в следующее мгновение она ляжет орлом. Если она лежит орлом, то ляжет решкой. Если же она лежит на боку, то в следующий момент ляжет орлом. Данное правило совершенно детерминистично: с чего бы вы ни начали, будущее предопределено этим законом. Допустим, к примеру, начальное состояние было Б. Дальнейшая История полностью предопределена: БОРОРОРОР О… Если мы начнем с Р, то история будет: РОРОРОРОРОР О… Если же в начале будет О, то мы получим историю: ОРОРОРОРОР О…
С этим законом что-то не так, но что именно? Как и другие детерминистические законы, он полностью предопределяет будущее.
Но если попытаться определить прошлое, ничего не получится. Допустим, мы обнаружили монету в состоянии Р. Можно быть уверенными, что предыдущим состоянием было О. Пока все хорошо. Но попробуем сделать еще один шаг в прошлое. Имеются два состояния, которые ведут к О, а именно Р и Б. Это создает проблему: получили мы О из Р или из Б? Узнать это невозможно. Вот это я и называю потерей информации, но в классической физике такого никогда не случается. Математические правила, на которых строятся законы Ньютона и максвелловская теория электромагнетизма, не оставляют сомнений: за каждым состоянием следует единственное состояние, и предшествует ему также единственное.
Другой путь, на котором может теряться информация, связан с наличием в законе доли неопределенности. В этом случае нельзя быть полностью уверенным ни в будущем, ни в прошлом.
Как я уже объяснял, квантовая механика включает элемент случайности, но в более глубоком смысле информация в ней никогда не теряется. Я проиллюстрировал это на примере с фотоном в главе 4, давайте сделаем это снова, на этот раз на примере электрона, сталкивающегося с неподвижной мишенью вроде тяжелого ядра. Электрон подлетает слева, двигаясь в горизонтальном направлении.
Он сталкивается с ядром и рассеивается в некотором непредсказуемом новом направлении. Хороший квантовый теоретик рассчитает вероятность того, что электрон отскочит, например, в перпендикулярном направлении, но не сможет надежно это направление предсказать.
Есть два способа проверить, сохраняется ли информация о начальном движении. Оба они включают запуск электрона назад под управлением обращенных вспять законов.
В первом случае наблюдатель проверяет, где находится электрон непосредственно перед обращением закона. Это можно сделать разными способами, в большинстве из которых в качестве зондов служат фотоны. Во втором случае наблюдатель не беспокоится о проверке; он просто реверсирует закон, никак не вмешиваясь в поведение электрона. Результаты этих двух экспериментов разделаются радикально. В первом случае электрон, двинувшись назад, оказывается в итоге в случайном месте и двигается в непредсказуемом направлении. Во втором случае, когда проверка не выполнялась, электрон в конце возвратной последовательности всегда оказывается движущимся назад в горизонтальном направлении. Когда наблюдатель в первый раз после начала эксперимента посмотрит на электрон, он обнаружит, что тот движется точно так же, как в начале, только в обратную сторону. Похоже, что информация теряется лишь тогда, когда мы активно взаимодействуем с электроном. В квантовой механике до тех пор, пока мы не взаимодействуем с системой, информация, которую она несет, остается столь же нерушимой, как и в классической физике.
Атака Стивена
Нелегко найти две более мрачные физиономии, чем были у меня и Герарда 'т Хоофта в тот день в Сан-Франциско в 1983 году. Высоко над Франклин-стрит в мансарде Вернера Эрхарда была объявлена война и совершено открытое нападение на наши самые глубокие убеждения. Стивен Наглец, Стивен Храбрец, Стивен Разрушитель располагал всем тяжелым вооружением, а его ангельская/демоническая улыбка показывала, что он об этом знает.
В этом нападении не было ничего личного. Блицкриг был нацелен против центрального столпа физики — неразрушимости информации. Часто информация запутывается до полной нераспознаваемости, но Стивен доказывал, что биты информации, упавшие в черную дыру, навсегда пропадают из нашего мира. На доске у него была диаграмма, которая это доказывала.
В ходе своих блестящих исследований геометрии пространства-времени Роджер Пенроуз изобрел способ визуального представления всего пространства-времени на одной доске или одном листе бумаги. Даже если пространство-время бесконечно, Пенроуз искажал его, сжимая при помощи хитрых математических приемов, так чтобы оно целиком умещалось в конечной области. Диаграмма Пенроуза, нарисованная на доске в особняке Вернера, изображала черную дыру с битами информации, падающими за горизонт. Горизонт был показан диагональной линией, и как только бит ее пересекал, он не мог вырваться назад, не превышая скорости света. Диаграмма также показывала, что каждый такой бит обречен попасть в сингулярность.
Диаграммы Пенроуза — необходимый инструмент теоретических физиков, но для их понимания нужна небольшая подготовка. Вот более знакомая картина, представляющая ту же самую черную дыру.
Бит

 

Идея Стивена была проста. Биты проваливаются в черную дыру, подобно метафорическим головастикам из главы 2, которые по беспечности попадают за точку невозврата.
Но не тот факт, что биты информации могут навсегда скрыться за горизонтом, так обеспокоил нас с 'т Хоофтом. Падение информации в черную дыру ничем не хуже ее запирания в очень надежном сейфе. Здесь же происходило нечто более зловещее. Возможность спрятать информацию в сейфе вряд ли станет поводом для беспокойства, но что, если после закрытия двери сейф прямо на ваших глазах испарится? Именно это предсказывал Хокинг для черных дыр.
К 1983 году я уже давно связал испарение черных дыр и наш разговор с Ричардом Фейнманом в кафе «Уэст Энд» в 1972 году. Сама мысль о том, что черные дыры могут в итоге распадаться на элементарные частицы, совершенно меня не тревожила. Но вот утверждение Стивена вызвало у меня недоверие: когда черная дыра испаряется, захваченные ею биты информации исчезают из нашей Вселенной. Информация не зашумляется. Она необратимо и навечно уничтожается.
Стивен со счастливым видом танцевал на могиле квантовой механики, а мы с 'т Хоофтом пребывали в полном замешательстве. Для нас подобная идея ставила под угрозу все законы физики. Попытка соединить общую теорию относительности с законами квантовой механики казалась чем-то вроде крушения столкнувшихся поездов.
Я не в курсе, знал ли 'т Хоофт о радикальной идее Стивена до встречи в мансарде у Вернера, но сам я впервые услышал о ней Именно там. Как бы то ни было, идея к тому времени уже не была Новой. Стивен разработал свои аргументы несколькими годами Ранее в опубликованных статьях и выполнил хорошую домашнюю работу. Он уже рассмотрел и отмел все возражения, которые я мог придумать, чтобы избежать его «информационного парадокса». Рассмотрим четыре из них.
1. Черные дыры на самом деле не испаряются
Для большинства физиков вывод об испарении черных дыр был большой неожиданностью. Но доказательство испарения, хотя и весьма сложное, было предельно убедительным. Изучая квантовые флуктуации вблизи самого горизонта, Хокинг (а также Билл Унру) доказал, что черные дыры имеют температуру и, как и все нагретые объекты, должны испускать тепловое (чернотельное) излучение. Время от времени появляются научные статьи, утверждающие, что черные дыры не испаряются. Но такие статьи быстро теряются в огромной мусорной куче маргинальных идей.
2. От черных дыр сохраняется остаток
Хотя испарение черных дыр казалось твердо установленным, было также ясно, что по мере испарения они делаются горячее и меньше. В какой-то момент испаряющаяся черная дыра станет такой горячей, что будет излучать частицы чрезвычайно высокой энергии. В финальной вспышке испарения они будут иметь энергию, далеко превосходящую все, с чем мы когда-либо сталкивались. Об этом последнем вздохе известно очень мало. Возможно, черная дыра прекратит испаряться, когда достигнет планковской массы (то есть массы пылинки). К этому моменту ее радиус будет равен планковской длине, и никто не может сказать, что случится потом. Есть такая логическая возможность, что черная дыра прекратит испарение и от нее сохранится остаток — крошечный информационный сейф, содержащий всю захваченную информацию. Согласно этой идее, каждый бит информации, который когда-либо упал в черную дыру, остается плотно запечатанным в этом невообразимо малом сейфике. Крошечный планковский остаток обладал бы тогда фантастическими свойствами: он был бы неизмеримо малой частицей, в которой может скрываться любое количество информации.
Хотя идея остатка была популярной альтернативой разрушению информации (на самом деле куда более популярной, чем правильная идея), она никогда меня не привлекала. Она выглядит как уловка для ухода от вопроса. Но это не только вопрос вкуса. Частица, способная скрывать бесконечное количество информации, обладала бы бесконечной энтропией. Существование таких бесконечно энтропийных частиц привело бы к термодинамической катастрофе: возникая в тепловых флуктуациях, они вытягивали бы всю теплоту из любой системы. На мой взгляд, остатки нельзя рассматривать всерьез.
3. Рождаются дочерние вселенные
Время от времени я получаю сообщения по электронной почте, которые всегда начинаются однотипно: «Я не ученый и слабо разбираюсь в физике и математике, но я думаю, что нашел решение проблемы, над которой вы и Хикинс… — иногда пишут «Хокинге», а порой «Хоскинс» —…работаете». Решение, предлагаемое в этих сообщениях, — это почти всегда дочерние вселенные. Где-то глубоко внутри черной дыры кусок пространства распадается и образует крошечную самодостаточную вселенную, отделенную от нашей области пространства-времени. (Я всегда представляю себе воздушный шарик с гелием, выскользнувший и улетевший.) Автор обычно доказывает, что вся информация, когда-либо упавшая в черную дыру, попадает в дочернюю вселенную. Это решает проблему: информация не уничтожается; она просто утекает куда-то в гиперпространство, надпространство, метапространство, или куда там деваются дочерние вселенные. Наконец, когда черная дыра Испаряется, разлом в пространстве заживаем, и, будучи отделенными! попавшие в переделку биты становятся абсолютно ненаблюдаемыми.
Дочерние вселенные — возможно, и не совсем глупая идея, особенно если допустить, что эти дочки вырастают. Наша Вселенная сама расширяется. Возможно, каждая дочерняя вселенная тоже Расширяется и в конце концов дозревает до полноценной вселенной с галактиками, звездами, планетами, собаками, кошками, людьми и своими собственными черными дырами. Но в качестве решения проблемы потерянной информации это просто бездоказательный уход от темы. Физика занимается наблюдениями и экспериментированием. Если дочерние вселенные уносят информацию, которая становится ненаблюдаемой, то для нашего мира результат будет точно такой же, как если бы информация уничтожалась, со всеми неприятными последствиями такого уничтожения.
4. Вариант с ванной
Данный вариант был наименее популярным возражением против хокинговской идеи. Эксперты по черным дырам и общей теории относительности отвергали его как «бьющий мимо цели». Тем не менее это была единственная возможность, которая имела смысл для меня. Представьте себе капли чернил, падающие в ванну с водой и несущие сообщение: буль, буль, кап, буль, кап, пропуск, кап, буль.
Очень быстро четко оформленные капли начинают растворяться, прочитать сообщение становится все труднее, а по воде расплываются чернильные облака.

 

Спустя несколько часов остается лишь ванна, заполненная однородной, чуть сероватой водой.
Хотя с практической точки зрения сообщение безнадежно зашумлено, принципы квантовой механики утверждают, что оно по-прежнему присутствует в хаосе огромного числа движущихся молекул. Но вскоре жидкость начинает испаряться из ванны. Молекула за молекулой, чернила и вода улетают в пустое пространство, оставляя ванну пустой и сухой. Информация исчезает, но уничтожается ли она? Хотя она зашумлена настолько, что нет никакой практической возможности ее восстановить, ни один бит информации не пропал. Что с ней случилось, вполне очевидно: она была унесена продуктами испарения, облаком молекул, улетевших в пространство.
Возвращаясь к черным дырам, рассмотрим, что происходит с провалившейся в них информацией при их испарении. Если черная дыра чем-то похожа на ванну, то ответ будет таким же: все биты информации в конечном счете передаются фотонам или другим частицам, уносящим энергию черной дыры. Другими словами, информация сохраняется среди многочисленных частиц, составляющих хокинговское излучение. Мы с 'т Хоофтом были убеждены, что так оно и есть. Но практически никто из специалистов по черным дырам нам не верил.
Есть и другой способ понимания информационного парадокса Стивена. Вместо того чтобы позволить черной дыре исчезнуть, мы будем, по мере того как она испаряется, подкармливать ее новыми предметами — компьютерами, книгами, компакт-дисками — как раз в таком темпе, чтобы не позволять ей уменьшаться. Иначе говоря, мы будем восполнять черной дыре ее потери бесконечным потоком информации, чтобы предотвратить ее уменьшение. Согласно Хокингу, черная дыра, хотя и не растет (она испаряется по мере того, как мы ее подкармливаем), информацию заглатывает как будто бы без всяких ограничений.
Все это напоминает любимый мной в детстве цирковой номер. Больше всего мне нравились клоуны, а из всех их номеров наиболее впечатлял меня фокус с клоунским вагончиком. Я не знаю, как они это проделывали, но в очень маленькую кабинку втискивалось поразительное число клоунов. Но что, если в вагончик залезает нескончаемый поток клоунов, а обратно никто не выходит? Это же не может продолжаться бесконечно, правда? Клоунская емкость любого вагона конечна, и когда она целиком заполнена, то хоть что-то — может, клоуны, а может, сосиски — должно начать выходить обратно.
Информация как клоуны, а черные дыры — как их вагончик. Для черной дыры данного размера есть предельное число битов, которое она может содержать. Вы уже можете догадаться, что этот предел есть энтропия черной дыры. Если черная дыра подобна другим объектам, то, когда емкость заполнена, либо дыра должна начать расти, либо информация должна начать просачиваться наружу. Но как она может просачиваться, если горизонт на самом деле является точкой невозврата?
Неужели Стивен был так бестолков и не видел, что хокинговское излучение может содержать скрытую информацию? Конечно нет. Несмотря на свою молодость, Стивен знал о черных дырах по крайней мере не меньше, чем кто-либо другой, и намного больше, чем я. Он очень глубоко продумал аналогию с ванной и нашел серьезное основание, чтобы ее отвергнуть.
Геометрия шварцшильдовской черной дыры к середине 1970-х годов была полностью ясна. Всякий, кто был в теме, рассматривал горизонт в качестве точки невозврата. И как в аналогии со сточным отверстием, эйнштейновская теория предсказывала, что всякий, кто по неосторожности пересечет горизонт, не заметит при этом ничего особенного: горизонт — это математическая поверхность, не имеющая физического воплощения.
В души релятивистов были внедрены следующие два важнейших факта.
♦ На горизонте нет препятствий, способных помешать объекту его пересечь и попасть внутрь черной дыры.
♦ Ничто: ни фотон, ни какого-либо типа сигнал — не может вернуться назад из-за горизонта. Чтобы это сделать, понадобилось бы превысить скорость света, а это, согласно Эйнштейну, невозможно.
Чтобы максимально все это прояснить, вернемся к бесконечному озеру из главы 2 с опасным стоком в центре.
Рассмотрим бит информации, плывущий по течению. Пока он не прошел точку невозврата, его еще можно вернуть назад. Но возле этой точки нет никакого предупреждения; бит проплывет мимо нее, и как только это случится, он не сможет вернуться, не превышая ограничение скорости. Теперь бит навсегда потерян.
Математика общей теории относительности не оставляла сомнений относительно горизонтов черных дыр. Это были просто ничем не отмеченные точки невозврата, не создающие никаких препятствий для падающих объектов.
Такое понимание глубоко укоренилось в сознании всех теорфизиков. Именно по этой причине Хокинг был уверен, что биты не только проваливаются сквозь горизонт, но также навсегда теряются для внешнего мира. Открыв, что черные дыры испаряются, Стивен заключил, что информация не может уходить вместе с этим излучением. Она должна оставаться — но где? После испарения черной дыры не будет никакого места, где она могла бы скрываться.
Я покидал Вернера в дурном настроении. По меркам Сан-Франциско было очень холодно, я был в легкой куртке, не помнил, где припарковал машину, и очень злился на своих коллег. Перед уходом я попытался обсудить с ними аргументы Стивена и был удивлен явным отсутствием любопытства и обеспокоенности. Группа состояла в основном из физиков-ядерщиков, которые не особо интересовались гравитацией. Как и Фейнман, они считали, что планковский масштаб столь далек, что он не может влиять на свойства элементарных частиц. Рим был в огне, и гунны — у ворот, но никто этого не замечал.
По пути домой трафик был таким плотным, что движение на 101-м шоссе периодически останавливалось. Я никак не мог выкинуть из головы утверждение Стивена. Стоя в пробке, я нарисовал на заиндевевшем ветровом стекле пару диаграмм и уравнений, но так и не нашел никакого выхода. Либо информация теряется, и тогда фундаментальные законы физики требуют полнейшего пересмотра, либо что-то эйнштейновская теория гравитации совершенно не работает вблизи горизонта черной дыры.
Как воспринял все это 'т Хоофт? Я бы сказал, очень ясно. Его неприятие хокинговских заявлений было несомненным. Точку зрения Герарда я опишу в следующей главе, но сначала надо объяснить смысл S-матрицы, его самого сильного оружия.
Назад: Часть II Неожиданная атака
Дальше: 11 Датское сопротивление