Книга: Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Назад: 7 Энергия и энтропия
Дальше: 9 Черный свет

8
Уилеровские мальчики, или Сколько информации можно затолкать в черную дыру?

В 1972 году, пока я беседовал с Ричардом Фейнманом в кафе «Уэст Энд», принстонский аспирант Якоб Бекенпггейн задавался вопросом: что происходит с теплом, энтропией и информацией в черных дырах? В то время Принстон был мировым центром обучения гравитационных физиков. Это могло быть как-то связано с тем, что здесь более двух десятилетий жил Эйнштейн, хотя к 1972 году с его смерти прошло уже семнадцать лет. Принстонским профессором был один из величайших провидцев современной физики Джон Арчибальд Уилер, вдохновивший на изучение гравитации и размышления о черных дырах многих выдающихся молодых ученых. Среди знаменитых физиков, испытавших глубокое влияние Уилера в тот период, были Чарльз Мизнер, Кип Торн, Клаудио Тейтельбойм и Якоб Бекенпггейн. Уилер, который ранее был научным руководителем диссертации Фейнмана, был, в свою очередь, учеником Эйнштейна. Как и сам великий ученый, он верил, что ключ к законам природы лежит в теории гравитации. Но в отличите от Эйнштейна Уилер, который сотрудничал с Нильсом Бором, верил также и в квантовую механику. Так что Принстон был центром исследований не только по гравитации, но также и по квантовой механике.
В то время теория гравитации была относительно непопулярной тихой заводью теоретической физики. Физики, занимавшиеся элементарными частицами, добивались колоссальныхуспехов в редукционистском марше ко все более тонким структурам. Атомы давно уступили место ядрам, а ядра — кваркам. Обнаружилась истинная роль нейтрино как равноправных партнеров электронов, и выдвигались гипотезы о новых частицах, таких как очарованный кварк, до экспериментального открытия которого оставался год или два. Радиоактивность ядер наконец была адекватно объяснена, и вот-вот предстояло появиться Стандартной модели элементарных частиц, физики, изучающие элементарные частицы, включая и меня, полагали, что есть занятия получше, чем тратить свое время на гравитацию. Были и исключения вроде Стивена Вайнберга, но большинство считало эту тему легкомысленной.
В ретроспективе это пренебрежение к гравитации смотрится крайне близоруким. Почему энергичные лидеры физической науки, смелые пионеры этой области знаний, были столь беспечны в отношении гравитации? Дело в том, что они не могли даже представить себе, чтобы гравитация играла значимую роль во взаимодействии элементарных частиц друг с другом. Представьте, что у вас есть тумблер, позволяющий выключать электрические силы, действующие между ядром атома и электронами, так чтобы только гравитационное притяжение удерживало электроны на своих орбитах. Что случится с атомом, когда вы щелкнете тумблером? Атом немедленно распухнет, поскольку скрепляющая его сила уменьшится. Насколько большим стал бы при этом обычный атом? Значительно больше всей наблюдаемой Вселенной!
А что случится, если оставить работать электрические силы, но выключить гравитацию? Земля улетит от Солнца, но изменения в отдельных атомах будут столь малы, что их не удастся обнаружить. Количественно гравитационные силы между двумя электронами в атоме примерно в миллион миллиардов миллиардов миллиардов миллиардов раз слабее электрических сил.
Такова была интеллектуальная среда, когда Джон Уилер принялся храбро исследовать океан неведения, отделявший обычный мир элементарных частиц от эйнштейновской теории гравитации. Уилер сам был ходячей загадкой. Внешне он выглядел и разговаривал как типичный бизнесмен. Он легко бы вписался в зал заседаний самой консервативной корпорации Америки. Фактически его политические взгляды и были консервативными. В самый разгар холодной войны Джон стоял на позициях решительного антикоммунизма. А еще на протяжении эпохи беспрецедентной социальной активности университетских кампусов в 1960-х и 1970-х годов он был глубоко любим своими студентами. Клаудио Тейтельбойм, ныне самый знаменитый латиноамериканский физик, был одним из уилеровских студентов. Будучи отпрыском известной чилийской семьи левой политической ориентации, он стал одним из многочисленных учеников Джона, снискавших научную славу. Семья была связана с Сальвадором Альенде; сам Клаудио был бесстрашным и откровенным врагом диктаторского режима Пиночета. Но, несмотря на политические расхождения, между Джоном и КлаудИо возникла крепчайшая дружба, основанная на глубокой симпатии и взаимном уважении мнений.
Впервые я встретил Уилера в 1961 году. Я был студентом Сити-колледжа Нью-Йорка с несколько странной академической справкой. На встречу с ним меня взял один из моих учителей, Гарри Судак — грызущий сигары и сквернословящий профессор из той же еврейской левой рабочей среды, что ия. Расчет был на то, чтобы впечатлить Уилера и устроить меня аспирантом, несмотря на отсутствие диплома. В то время я работал водопроводчиком в Южном Бронксе, и моя мать считала, что к встрече я должен быть надлежащим образом одет. Для моей мамы это значило, что следует показать солидарность с моим социальным классом и быть в своей рабочей одежде. Сейчас мой водопроводчик в Пало-Альто одевается также, как и я, когда читаю лекции в Стэнфордском университете. Но в 1961 году мой костюм водопроводчика был таким же, как у моего отца и всех его приятелей-сантехников в Южном Бронксе, — комбинезон в стиле Крошки Абнера, синяя фланелевая рубашка и тяжелые со стальными подковами башмаки. Я также носил кепку, чтобы уберечь волосы от грязи и пыли.
Когда Гарри заехал за мной, чтобы отправиться в Принстон, он обомлел. Большая сигара выпала у него изо рта, и он отправил меня наверх переодеваться. Он сказал, что Джон Уилер — совсем другой парень.
Когда я вошел в величественный профессорский кабинет, то понял, что имел в виду Гарри. Единственный способ описать человека, который меня приветствовал, — это сказать, что он выглядел республиканцем. Какого черта меня занесло в это вражеское логово?
Двумя часами позже я был полностью очарован. Джон с энтузиазмом описывал свои представления о том, как пространство и время становятся бешеным, дрожащим, пенящимся миром квантовых флуктуаций, когда рассматриваешь их в чудовищной силы микроскоп. Он сказал мне, что самая глубокая и вдохновляющая проблема физики — это объединение двух великих эйнштейновских теорий — общей теории относительности и квантовой механики. Он объяснил, что лишь на планковском расстоянии элементарные частицы раскрывают свою истинную природу, и она должна быть целиком геометрической — квантово-геометрической. На глазах молодого честолюбивого физика важный бизнесмен превратился в идеалистического мечтателя. Больше всего на свете я хотел последовать в бой за этим человеком.
Был ли на самом деле Джон Уилер столь консервативным, каким он казался? Честно говоря, я не знаю. Но он определенно не был ханжой-морализатором. Однажды, когда Джон и мы с женой Энни выпивали в прибрежном кафе Вальпараисо, он поднялся со словами, что хочет прогуляться и посмотреть на южноамериканских девушек в бикини. В то время ему было уже сильно за восемьдесят.
Как бы то ни было, я так никогда и не стал одним из уилеровских мальчиков; Принстон меня не принял. Так что я отправился в Корнелл, где физика была куда слабее. Прошло много лет, прежде чем я вновь ощутил тот же трепет, что в 1961 году.
Где-то около 1967 года Уилер очень заинтересовался гравитационно сколлапсировавшими объектами, которые Карл Шварцшильд описал в 1917 году. Тогда они назывались черными или темными звездами. Но это не отражало сущности данных объектов — тот факт, что это глубокие дыры в пространстве, гравитационное притяжение которых непреодолимо. Уилер стал называть их черными дырами. Сначала знаменитый американский физический журнал Physical Review отказался использовать такое название. Сегодня причина этого выглядит смешной: термин «черная дыра» считался непристойным! Однако Джон пробил его через редакционную коллегию, и черные дыры вышли в свет.
Забавно, что следующий тезис Джона гласил: «Черные дыры не имеют волос». Не знаю, возражал ли Physical Review на этот раз, но терминология закрепилась. Уилер вовсе не пытался провоцировать редакторов. Напротив, он приводил очень серьезные соображения относительно свойств горизонтов черных дыр. Под «волосами» он имел в виду наблюдаемые свойства — какие-нибудь кочки или другие неоднородности. Уилер отмечал, что горизонт черной дыры гладкий и лишен каких-либо деталей, подобно лысой голове, — на самом деле он еще намного более гладкий. Когда черная дыра образуется — скажем, при коллапсе звезды, — горизонт очень быстро приобретает форму идеальной, без каких-либо особенностей, сферы. Если не считать массы и скорости вращения, любая черная дыра совершенно неотличима от других. По крайней мере, так считалось.
Израильтянин Якоб Бекенштейн — маленький тихий человек. Но его мягкое поведение в научном сообществе контрастирует с его интеллектуальной смелостью. В 1972 году он был одним из аспирантов Уилера, заинтересовавшимся черными дырами. Однако они занимали его не как небесные тела, которые когда-нибудь можно будет увидеть в телескоп. Страстью Бекенштейна были основания физики, ее самые фундаментальные принципы, и он чувствовал, что черные дыры могут рассказать о законах природы нечто очень важное. Особенно его интересовал вопрос, терзавший и Эйнштейна: как черные дыры уживаются с принципами квантовой механики и термодинамики. По сути, стиль физических исследований Бекенштейна был очень похож на эйнштейновский; оба они были мастерами мысленного эксперимента. По минимуму используя математику, но очень глубоко размышляя о принципах физики и о том, как их применять в воображаемых (но возможных) физических условиях, оба ученых могли получать далеко идущие выводы, которые сильно влияли на будущее физики.
Вот вкратце вопрос, который поставил Бекенштейн. В вашем распоряжении контейнер с горячим газом, имеющим высокий уровень энтропии. Вы бросаете контейнер с энтропией в черную дыру. Здравый смысл говорит, что контейнер просто исчезнет под горизонтом. С точки зрения любых практических задач энтропия полностью исчезнет из наблюдаемой Вселенной. Согласно доминирующему представлению, гладкий, лысый горизонт не способен скрывать никакую информацию. Так что будет казаться, что энтропия мира убывает, что противоречит второму началу термодинамики, который говорит, что энтропия никогда не убывает. Неужели можно так легко нарушить столь важный принцип, как второе начало? Эйнштейн бы ужаснулся.
Бекенштейн заключил, что второе начало слишком глубоко встроено в систему физических законов, чтобы так легко нарушаться. Поэтому он выдвинул радикально новое предположение: сами черные дыры должны обладать энтропией. Он утверждал, что при подсчете общей энтропии Вселенной — недостающей информации в звездах, межзвездном газе, атмосферах планет и всех ваннах с горячей водой — необходимо добавить определенное количество энтропии в счет каждой черной дыры. Благодаря этой идее Бекенштейн спас второе начало. Эйнштейн, без сомнения, одобрил бы это.
Вот как рассуждал Бекенштейн. Энтропия всегда сопутствует энергии. Она связана с числом комбинаций чего-то, а это что-то во всех случаях является энергией. Даже чернила на этой странице состоят из имеющих массу атомов, которые, согласно Эйнштейну, обладают энергией, поскольку масса — это форма энергии. Можно сказать, что энтропия соответствует числу возможных способов организации порций энергии.
Когда Бекенштейн в своем воображении засовывал контейнер с горячим газом в черную дыру, он добавлял ей энергию. Это оборачивалось увеличением массы и размеров черной дыры. Вели, как предположил Бекенштейн, черные дыры имеют энтропию, которая растет вместе с их массой, то появляется шанс спасти второе начало. Энтропия черной дыры должна возрастать сильнее, чем необходимо для компенсации потерь.
Прежде чем рассказывать, как Бекенштейн вывел формулу для энтропии черной дыры, надо объяснить, почему эта идея была такой шокирующей, что, согласно Хокингу, он первоначально отбросил ее как вздорную.
Энтропия учитывает различные варианты организации, но что это такое? Если горизонт черной дыры лишен деталей, как самая гладкая из мыслимых лысин, то что там подсчитывать? По этой логике, черная дыра должна иметь нулевую энтропию. Утверждение Джона Уилера о том, что «черные дыры не имеют волос», выглядит прямо противоречащим теории Якоба Бекенштейна.
Как примирить учителя и студента? Позвольте привести поясняющий пример. Отпечаток на листе с разными градациями серого в действительности состоит из крошечных черных и белых точек. Предположим, в нашем распоряжении имеется миллион черных точек и миллион белых. Один из возможных рисунков получается, если разделить страницу пополам по вертикали или по горизонтали. Одну половину можно сделать черной, другую — белой. Есть только четыре способа выполнить это.
Получается четкий рисунок с резкими контрастами, но имеющий всего несколько вариаций. Четкий рисунок с резкими контрастами обычно означает низкую энтропию.

 

Теперь выберем другую крайность и равномерно распределим по той же площади равное число черных и белых пикселов. Получится более или менее однородный серый цвет. Если пикселы действительно маленькие, этот серый фон будет выглядеть совершенно однородным. Имеется колоссальное число способов перераспределить черные и белые точки так, что мы не различим варианты без увеличительного стекла.
В этом случае видно, что высокая энтропия часто сопутствует однородному, «лысому» виду.
Связь внешней однородности и высокой энтропии указывает на нечто важное. Она подразумевает, что система, какой бы она ни была, должна состоять из большого числа микроскопических объектов, которые (а) слишком малы, чтобы их увидеть, и (б) могут комбинироваться множеством разных способов без изменения общего вида системы.
Бекенштейн вычисляет энтропию черной дыры
Мысль Бекенштейна о том, что черные дыры обладают энтропией, то есть, иными словами, несмотря на свою безволосость, содержат скрытую информацию, оказалась одним из тех простых, но глубоких суждений, которые одним махом меняют ситуацию в физике. Когда я начинал писать книги для широкой публики, мне настоятельно советовали ограничиться одной-единственной формулой: E = mc2. Мне говорили, что с каждым дополнительным уравнением продажи книги будут падать на десять тысяч экземпляров. Если честно, это противоречит моему опыту. Так что после долгих колебаний я решил пойти на риск. Доказательство Бекенштейна столь необычайно простое и красивое, что отказ от него обесценил бы эту книгу. Тем не менее я приложил усилия и разъяснил результаты так, чтобы менее склонные к математике читатели могли спокойно пропустить несколько простых формул, не теряя понимания сути.
Бекенштейн не ставил впрямую вопрос о том, сколько битов можно скрыть внутри черной дыры данного размера. Вместо этого он задался вопросом о том, как изменится размер черной дыры, если сбросить в нее один бит информации. Это похоже на вопрос о том, насколько поднимется уровень воды в ванне, если добавить в нее одну каплю воды. Точнее даже: насколько он поднимется при добавлении одного атома?
Сразу возник другой вопрос: а как добавить один бит? Может быть, для этого Бекенштейну надо бросить в черную дыру одну точку, напечатанную на клочке бумаги? Очевидно, нет; точка состоит из огромного числа атомов, и то же самое относится к бумаге. Поэтому в точке содержится куда больше одного бита информации. Лучший подход — это вбросить одну элементарную частицу.
Предположим, например, что в черную дыру падает одиночный фотон. Даже один фотон может нести более одного бита информации. В частности, масса информации содержится в координатах точки, где фотон пересекает горизонт. Здесь Бекенштейн ловко применил гейзенберговскую концепцию неопределенности. Он посчитал, что положение фотона должно быть максимально неопределенным, лишь бы только он попадал в черную дыру. Такой «неопределенный фотон» несет лишь один бит информации, а именно находится ли он где-то внутри черной дыры.
Если помните, в главе 4 говорилось о том, что разрешающая способность светового луча не превышает длины его волны. В данном случае Бекенштейн не собирался рассматривать детали на горизонте; наоборот, горизонт должен был выглядеть максимально размытым. Хитрость была в том, чтобы использовать такой длинноволновый фотон, чтобы он распределился по всему горизонту. Иными словами, если горизонт имеет шварцшильдовский радиус то фотон должен иметь такую же длину волны. Кажется, что можно использовать и более длинные волны, но такие фотоны будут отскакивать от черной дыры, а не захватываться ею.
Бекенштейн подозревал, что добавление лишнего бита к черной дыре вызовет прирост ее размера, пусть и очень небольшой, подобно тому как добавление лишней молекулы резины к воздушному шарику ненамного его увеличит. Однако для вычисления этого прироста требуется несколько промежуточных шагов. Давайте сначала бегло с ними ознакомимся.
1. Первым делом надо узнать, насколько увеличится энергия черной дыры при добавлении одного бита информации.
2. Далее нужно определить, насколько изменится масса черной дыры с добавлением лишнего бита. Для этого вспомним знаменитую формулу Эйнштейна:
E = mc2
Однако нам понадобится обратить ее, что позволит узнать изменение массы по величине добавленной энергии.
3. Когда масса определена, можно вычислить изменение шварцшильдовского радиуса, используя ту же формулу, которую вывели Митчел, Лаплас и Шварцшильд (см. главу 2):
Rs = 2MG/c2
4. Наконец, надо определить прирост площади горизонта. Для этого нужна формула площади сферы:
Площадь горизонта = 4πRs2.
Начнем с энергии однобитного фотона. Как я уже объяснял, фотон должен иметь достаточно большую длину волны, чтобы его положение внутри черной дыры было неопределенным. Это значит, что длина волны должна быть Rs. Согласно Эйнштейну, фотон с длиной волны Rs имеет энергию E, определяемую следующей формулой:
Е = hc/Rs.
В этой формуле h — постоянная Планка, а с — скорость света. Из нее следует, что сбрасывание в черную дыру одного бита информации добавляет ей энергию величиной hc/Rs.
Следующий шаг — это расчет изменения массы черной дыры. Для пересчета энергии в массу ее надо разделить на с2, а значит, масса черной дыры возрастет на величину h/Rsc:
Изменение массы = h/Rsc.
Подставим в эту формулу числа, чтобы увидеть, сколько же добавит один бит к массе черной дыры, имеющей массу Солнца.
Постоянная Планка, h = 6,6x10-34
Шварцшильдовский радиус черной дыры, Rs = 3000 м
Скорость света, с = 3х108
Гравитационная постоянная, G = 6,7х10-11
Таким образом, один бит информации добавляет к черной дыре солнечной массы поразительно малую величину:
Прирост массы = 10-45 килограмма.
И все же, как говорится, «это больше, чем ничто».
Перейдем к третьему шагу: используем связь между массой и радиусом для вычисления изменения Rs. В алгебраической форме ответ будет таким:
Прирост Rs = 2hG / (Rs с3).
У черной дыры солнечной массы Rs составляет около 3000 м. Если подставить все числа, то окажется, что радиус увеличится на 10-72 м. Это не только безмерно меньше протона, но также безмерно меньше планковской длины (10-35 м). При таком малом изменении непонятно, зачем мы вообще это вычисляем, но было бы ошибкой пренебречь этой малостью.
Последний шаг состоит в определении того, насколько изменится площадь горизонта. Для черной дыры солнечной массы прирост площади горизонта составляет около 10-70 квадратного метра. Это очень малая величина, но опять, «это больше, чем ничто». И не просто больше, чем ничто, а нечто совершенно особое: 10-70 м2, оказывается, как раз равняется одной квадратной планковской единице.
Это случайное совпадение? Что получится, если взять черную дыру земной массы (размером с клюквину) или черную дыру в миллиард раз массивнее Солнца? Попробуйте — с числами или с формулами. Каков бы ни был исходный размер черной дыры, всегда выполняется правило:
Добавление одного бита информации увеличивает площадь горизонта любой черной дыры на одну планковскую единицу площади, или на одну квадратную планковскую единицу.
Каким-то образом в принципах квантовой механики и общей теории относительности скрыта загадочная связь между невидимыми битами информации и кусочками площади планковского размера.
Когда я объяснил все это на своем подготовительном курсе по физике в Стэнфорде, кто-то на заднем ряду протяжно присвистнул и произнес: «Кру-у-уто». Это действительно круто, а еще глубоко и, вероятно, содержит ключ к загадке квантовой гравитации.
Теперь представьте формирование черной дыры бит за битом, так же как можно наполнять ванну атом за атомом. Каждый раз при добавлении бита информации площадь горизонта прирастает на одну планковскую единицу. К тому времени, когда черная дыра будет готова, площадь ее горизонта окажется равной общему числу битов скрытой в ней информации. Так что главное достижение Бекенштейна можно суммировать тезисом:
Энтропия черной дыры, измеренная в битах, пропорциональна площади ее горизонта, измеренной в планковских единицах.
Или, еще более кратко:
Информация равна площади.
Это выглядит почти так, как если бы горизонт был плотно покрыт несжимаемыми битами информации; сходным образом можно плотно покрывать столешницу монетами.
При добавлении новых монет площадь, занятая всеми монетами вместе, будет расти. Биты, монеты — принцип один и тот же.
Единственная проблема с этой иллюстраций заключается в том, что на горизонте нет монет. Будь они там, Алиса обнаружила бы их, падая в черную дыру. Согласно общей теории относительности, для свободно падающей Алисы горизонт — это невидимая точка невозврата. Сама возможность для нее встретить что-то вроде стола с монетами прямо противоречит эйнштейновскому принципу эквивалентности.
Этот конфликт — очевидная несовместимость между представлением о горизонте как о поверхности, плотно заполненной материальными битами, и как о точке невозврата — и стал казус белли для Битвы при черной дыре.
Другой момент, озадачивающий физиков с момента открытия Бекенштейна: почему энтропия пропорциональна площади горизонта, а не внутреннему объему черной дыры? Кажется, что внутри пропадает огромное количество места. Фактически черная дыра ужасно похожа на Птолемееву библиотеку. Мы еще вернемся к этому вопросу в главе 18, где увидим, что весь мир — это голограмма.
Хотя Бекенштейн пришел к правильному выводу — энтропия черной дыры действительно пропорциональна площади, его доказательство не было идеально строгим, и он об этом знал. Он не говорил, что энтропия равна площади, измеренной в планковских единицах. Из-за ряда неопределенностей в его выкладках он мог лишь утверждать, что энтропия черной дыры примерно равна (или пропорциональна) ее площади. В физике слово «примерно» — очень ненадежное. Означает оно удвоенную площадь или четверть площади? Хотя доказательство Бекенштейна и было блестящим, оно не позволяло точно определить коэффициент пропорциональности.
В следующей главе мы увидим, как открытие Бекенштейном энтропии черных дыр привело Стивена Хокинга к величайшему озарению: черные дыры обладают не только энтропией, как совершенно верно догадался Бекенштейн, но у них также есть и температура. Это не бесконечно холодные, мертвые объекты, какими физики их себе представляли. Черные дыры высвечивают свою внутреннюю теплоту, но в итоге эта теплота приводит к их гибели.
Назад: 7 Энергия и энтропия
Дальше: 9 Черный свет