Правое и левое
Биохимические реакции – это комплекс циклических и сетевых молекулярных взаимодействий. Чтобы эти затейливые многоуровневые процессы работали, молекулы должны обладать подходящими размерами и формой. Молекулярный отбор решает задачу подбора наиболее подходящей молекулы для осуществления соответствующего биохимического действия, и матричный отбор на минеральных поверхностях в настоящее время считается наиболее правдоподобной версией происхождения жизни.
Пожалуй, самым большим препятствием на пути молекулярного синтеза является хиральность, разделение на правое и левое, столь распространенное в мире. Многие из живых молекул образуют зеркальные пары, подобно двум нашим рукам – левой и правой. Хиральные пары молекул во многих отношениях тождественны: они обладают одинаковым химическим составом, одними и теми же температурами плавления и кипения, одинаковым цветом и плотностью, одинаковой электропроводимостью. Но «леворукие» и «праворукие» молекулы имеют разные, несовместимые формы, в чем легко убедиться на опыте, если попробовать надеть перчатку с левой руки на правую. Оказывается, жизнь невероятно разборчива: живые клетки почти всегда используют левосторонние аминокислоты и правосторонние молекулы сахара.
Хиральность имеет огромное значение. Любопытно, что искусственно созданный лимонен правосторонней формы пахнет апельсином, а в левостороннем варианте эта простейшая кольцевая молекула пахнет лимоном. Обонятельные рецепторы нашего носа чувствительны к хиральности: левосторонний и правосторонний лимонен подает в наш мозг разные сигналы. Вкусовые рецепторы менее чувствительны к хиральности сахарозы. И правосторонняя, и левосторонняя сахарозы имеют сладкий вкус, но наша пищеварительная система настроена на усвоение исключительно правосторонних сахаров. На свойстве левосторонних сахаров основано действие заменителей сахара, например, тагатозы. Трагическая история с талидомидом тоже связана с хиральностью. Правосторонняя разновидность этого лекарства облегчала утреннюю тошноту у беременных женщин, но левосторонняя модификация, которая тоже попадала к пациенткам, вызывала родовые осложнения. Теперь FDA (Управление по контролю за лекарствами и продуктами США) строго требует, чтобы лекарства обладали правильной хиральностью – это требование спасает жизни, но дополнительные расходы на производство составляют при этом около 200 млрд долларов ежегодно.
Результатом большинства экспериментов по синтезу биомолекул (включая опыты Миллера – Юри и гидротермальные эксперименты) являются левосторонние молекулы, а в естественных условиях молекулы левосторонние и правосторонние производятся примерно в одинаковой пропорции. На самом деле неживая материя безразлична к разнице между левым и правым. Но живое вещество требует точной формы: левосторонние аминокислоты и правосторонние сахарозы имеют жизненно важное значение. Молекулы противоположной направленности просто не могут функционировать. И вот наша исследовательская группа задалась вопросом: как жизнь синтезирует преимущественно левосторонние аминокислоты и правосторонние сахарозы?
Наши последние эксперименты показали, что хиральные поверхности минералов сыграли ключевую роль в отборе молекул определенной ориентации и соответственно – в происхождении самой жизни. В 2000 г. мы с коллегами обнаружили то, что тогда казалось поразительным, а теперь воспринимается как нечто обыденное: хиральные поверхности минералов встречаются повсюду в природе. Обычные минералы в составе любой породы или почвы изобилуют поверхностями, где атомы преобразуются в молекулы с определенной направленностью – либо левой, либо правой. В природе такие поверхности встречаются в равной пропорции, т. е. Земля в глобальном масштабе не отдает предпочтение ни правой, ни левой стороне. Но каждая молекула тщательно выбирает способ закручивания. Наши эксперименты показали, что определенные левосторонние молекулы обычно собираются на одном и том же наборе поверхностей кристаллов, а их зеркальное отражение, правосторонние молекулы, так же устойчиво предпочитают формироваться на другом виде минералов. Каждая поверхность, на которой отбираются и накапливаются молекулы, становится экспериментальной мини-площадкой для молекулярного отбора и синтеза.
По отдельности каждый такой естественный эксперимент взаимодействия минералов с молекулами отнюдь не порождал жизнь. Но заметим, что бесчисленные триллионы триллионов триллионов минеральных поверхностей, омываемых насыщенным органическими молекулами «бульоном», повторяли свой маленький «эксперимент» снова и снова – и так сотни миллионов лет. Земля протестировала таким образом практически все возможные комбинации молекул в самых разных условиях. Небольшая часть таких комбинаций, проявившая способность к самосборке, или к более тесной связи с поверхностью минералов, или к большей устойчивости в условиях высоких температур и давлений, выживала и, возможно, разрасталась, может быть, продолжала эволюционировать.
У нас нет точных данных, какие именно из этих бесконечных комбинаций молекул и минералов привели к образованию чего-то похожего на жизнь, но принципы молекулярного отбора и регулирования становятся все более понятными. Биомолекулы синтезировались в огромном количестве, и некоторые из них продолжали разрастаться во все более и более крупные скопления. Наши эксперименты позволяют предположить, что большую роль играли электрические заряды. Некоторые молекулы обладали слабым положительным зарядом; другие имели слабый отрицательный заряд; третьи отличались полярностью (например, вода), т. е. одна и та же молекула обладала как положительным, так и отрицательным полюсом. У минералов также имелись либо положительные, либо отрицательные заряды. Соедините эти заряженные объекты, и они спонтанно упорядочатся: положительный заряд неуклонно притянется к отрицательному. Таким образом, всевозможные скопления молекул собирались практически во всех влажных минеральных средах нашей добиологической планеты.