Книга: История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет
Назад: Вода: краткая биография
Дальше: Зримый круговорот воды

Вода, вода, кругом вода

Одно из самых распространенных в космосе веществ – это вода. Куда бы мы ни обратили свой взгляд, повсюду встречается вода. Ее наличие на планетах, спутниках и кометах объясняет, почему же воды так много на Земле, а также указывает на возможность присутствия жизни в космосе, поскольку вода и жизнь тесно связаны между собой. Наблюдения в телескопы могут быть обманчивыми, поскольку обилие воды в нашей атмосфере искажает представление о наличии воды на отдаленных объектах. Тем не менее в глубоком космосе на некоторых космических объектах обнаруживается ледяной покров – его определяют по выраженному поглощению замерзшей водой инфракрасных лучей.
Этот спектроскопический след показывает, что значительные объемы замерзшей воды встречаются на некоторых кометах и астероидах. Астрономические исследования зафиксировали множество ледяных миров в пределах Солнечной системы – от Плутона с его небесным спутником Хароном до Сатурна с его сверкающими ледяными кольцами. Все газовые гиганты, изначально состоящие из водорода и гелия, в своих плотных атмосферах содержат значительные запасы водяного пара. На громадных спутниках Юпитера Европе и Каллисто, предположительно, под многокилометровым покровом льда находятся еще более глубокие океаны воды.
Ближние к нам планеты земного типа, на первый взгляд, кажутся безводными. Однако благодаря наблюдениям с помощью запущенного НАСА на Меркурий космического аппарата Messenger обнаружились солидные отложения льда в холодных полярных кратерах, дна которых не достигают лучи Солнца. Следующая планета, Венера, возможно, вначале имела запасы воды, сопоставимые с земными, но в настоящее время воды на ее поверхности, скорее всего, почти нет. Ее раскаленная углекислая атмосфера свидетельствует о безудержном парниковом эффекте и о давно исчезнувшей поверхностной воде, когда-то существовавшей на планете.
Совершенно иная картина открывается на Марсе, где белые шапки полярного льда то увеличиваются, то уменьшаются в соответствии с 687-суточным марсианским годом. По мнению астрономов, на Красной планете вполне может быть вода, а значит, и жизнь. В 1870-е гг., во время сильного сближения Марса и Земли, итальянский астроном Джованни Скиапарелли зафиксировал темные линейные объекты, которые он интерпретировал как естественные долины, возможно, произведенные работой воды, по-итальянски – canali. В переводе это слово было ошибочно передано как «каналы», что означает высокотехнологичные инженерные сооружения, и это породило устойчивое мнение о наличии на Марсе разумной жизни. Наиболее горячим приверженцем этой идеи был гарвардский астроном Персиваль Лоуэлл, буквально одержимый открытиями Скиапарелли. Он потратил все семейное состояние на постройку обсерватории во Флагстаффе, штат Аризона, и там занимался исключительно наблюдениями за Марсом. Пользуясь новейшим 60-сантиметровым телескопом и ясным аризонским небом, он полагал, что сумеет разрешить загадку сети каналов, протянувшихся от полярных ледников к засушливой зоне экватора. В своих чрезвычайно популярных книгах: Mars (1895), «Марс и его каналы» (Mars and Its Canals, 1905) и «Марс как прибежище жизни» (Mars as the Abode of Life, 1908) Лоуэлл описывает последнее отчаянное техническое достижение расы, исчезнувшей вследствие недостатка воды.
Красочные фантазии Лоуэлла породили целую волну научно-фантастических романов и рассказов (включая классическую «Войну миров» Г. Уэллса в 1898 г.), но так и не сумели убедить научное сообщество, что на Марсе имеется вода, тем более жизнь. Несмотря на более чем вековую историю исследований с использованием все более и более мощных телескопов, а также с запуском на Марс сложнейшей техники: зондов (начиная с Mariner-4 в 1965 г.), искусственных спутников (первым из них стал Mariner-9 в 1971 г.) и посадочных модулей (начиная с Viking в 1976 г.), убедительных доказательств наличия на Марсе источников воды и водоемов так и не было получено. В конце 1970-х гг. путем спектрального анализа с помощью Viking было документально зафиксировано наличие водяного льда в северной полярной зоне, но только в 2000-е гг., благодаря применению сложнейших приборов на последнем поколении искусственных спутников, а также манипуляторов на зонде Phoenix и марсоходах Spirit и Opportunity было подтверждено наличие огромных запасов воды и условий ее залегания на Марсе.
В настоящее время большая часть водных запасов Марса состоит из зон вечной мерзлоты и, возможно, грунтовых вод в более теплых регионах – потенциальные водоемы, которые пока остаются изолированными от поверхностного сухого слоя. Признаки наличия таких глубинных резервуаров были обнаружены в 2002 г. с помощью высокоточного нейтронного спектрометра, установленного на зонде Odyssey, запущенном к Марсу. Космические лучи, обстреливая поверхность Марса, способны выбивать нейтроны из водородосодержащих (а значит, и водоносных) отложений. Спектрометр разработан для обнаружения таких нейтронов на обширных территориях марсианской поверхности, от экваториальных зон до высоких широт. Однако эти интригующие результаты вызвали не меньше вопросов, чем дали ответов, поскольку таким образом невозможно было определить характер агрегатного состояния воды – жидкость это, лед или часть минерального соединения.
В 2007 г. запущенная НАСА многофункциональная автоматическая космическая станция Mars Reconnaissance Orbiter, используя радар, способный «видеть» сквозь грунт, представила изображение в достаточно высоком разрешении скрытой в глубинах Марса воды. Эти новаторские исследования обнаружили скопления льда размером с ледники в умеренных широтах южного полушария. Позднее европейская космическая станция Mars Express Orbiter, используя аналогичный радар, обнаружила глубинный лед на большей части территории планеты. В зонах, близких к южному полюсу, зафиксированы ледники толщиной более полукилометра. Поистине, Марс может располагать объемом воды в виде льда, которая могла бы покрыть всю планету океаном глубиной несколько сотен метров. Возможно, когда-то на Марсе существовали родственники земных океанов.
Наличие воды также может быть установлено по присутствию особых горных пород и минералов. Посадочный модуль Phoenix (НАСА), а также марсоходы Spirit и Opportunity обнаружили многочисленные дополнительные доказательства в виде минералов, образованных при взаимодействии горных пород с водой. В приповерхностных отложениях Марса часто встречаются водосодержащие глинистые минералы, и, возможно, именно они являются тем богатым источником водорода, который был обнаружен ранее с помощью нейтронного спектрометра. Эвапориты, минералы, которые обычно встречаются на месте высохших озер и морей, так же часто встречаются на Марсе, как и опал – слабо кристаллизованная разновидность кварца, которая обычно образуется при просачивании горячей воды сквозь осадочные породы.
Используя новые подходы к исследованию Красной планеты, ученые находят все больше и больше доказательств, что в былые времена на поверхности Марса была вода. Фотографии высокого разрешения показывают древние русла рек и промоины с разбросанными валунами, каплевидные острова, оползни и сеть проток. Эти формы рельефа врезаются в осадочные отложения, которые ранее, видимо, были отложены мелководными озерами или морями. Ведь террасы, похожие на морские, которые охватывают северное полушарие Марса, указывают на то, что когда-то этот регион мог быть больше чем на треть покрыт океаном. Если все обстояло так, то менее разогретый Марс, возможно, за миллионы лет до Земли был голубой планетой, пригодной для жизни.
И наконец, Луна – ключ к пониманию того, как сформировалась вода на ее большом брате – Земле. С общепринятой точки зрения, Луна сухая, как кость (на самом деле она даже суше кости, которая сохраняет в себе довольно много воды даже жарясь в пустыне на солнце). Многие данные подтверждают степень сухости Луны: земные телескопы не фиксируют характерного инфракрасного поглощения; в составе образцов лунного грунта, собранных «Аполлонами» со всех шести мест посадки, не обнаруживается следов воды (с учетом возможностей аналитического оборудования 1970-х гг.); находка железа, пролежавшего на поверхности Луны более четырех миллиардов лет, без признаков ржавчины, исключает малейшую возможность наличия агрессивной воды.
Хотя общепринятая точка зрения – вещь своеобразная. Наступает момент, и находится человек, подвергающий сомнению то, что всеми принималось за истину, и порой это приводит к интересным открытиям. В 1994 г. единственный полет Clementine предоставил радиолокационные измерения, показавшие наличие замерзшей воды, но это мало кого убедило. Четыре года спустя на Lunar Prospector была использована нейтронная спектроскопия, что позволило выявить значительную концентрацию атомов водорода, а следовательно, и вероятное наличие водяного льда или водосодержащих минералов поблизости от полюсов Луны. Но многие эксперты все же указали на солнечный ветер – как на более вероятный источник атомов водорода. В октябре 2009 г. специалисты НАСА спланировали падение последней ступени ракетоносителя Atlas в один из лунных кратеров (кратер Кабеус, вблизи южного полюса Луны) и тщательно исследовали шлейф обломков на содержание воды. Как и предполагалось, вынесенная пыль включала небольшое, но различимое количество животворящей влаги – вполне достаточное для возобновления интереса к вопросу о существовании воды на Луне. В том же октябре журнал Science опубликовал три статьи подряд, утверждающих, что теперь существует бесспорное доказательство наличия воды на Луне.
Здесь на сцену вышел Эрик Хаури с коллегами из Института Карнеги. Используя ионный микрозонд – высокочувствительный прибор, не существовавший во времена первого поколения ученых, исследовавших образцы лунного грунта, – команда Хаури вернулась к исследованию цветных стеклянных шариков, вроде тех лунных образцов, с которыми я впервые работал в далеком 1976 г. Лет за десять до Хаури эти шарики изучали на наличие признаков воды другие ученые, но приборы, бывшие в их распоряжении, не могли соперничать в точности с ионным микрозондом, с помощью которого можно вести измерения в масштабе одной тысячной миллиметра. Хаури и его коллеги пришлифовали «бисерины» таким образом, что в ионном зонде стало возможно увидеть их концентрические структуры. Наружный слой образца содержал очень мало воды – одну миллионную объема, но сердцевина крупнейших образцов содержала в сто раз больше воды. За миллиарды лет большая часть воды, содержавшейся вначале в стеклянных бусинах, испарилась в космос, причем с поверхности в большей степени, чем из сердцевины. Как бы то ни было, учитывая факт значительного содержания оставшейся внутри воды, Хаури с коллегами считают, что исходное содержание воды в лунной магме было не менее 750 миллионных объема – огромное количество воды, сопоставимое со многими вулканическими породами на Земле и более чем достаточное для вулканической активности, в ходе которой взрывные извержения вулканов выбрасывали магму на поверхность миллиарды лет назад.
Если вулканы Луны в прошлом извергались под воздействием воды, то где-то внутри мерзлых лунных недр должны храниться огромные массы Н2О. Поскольку Луна образовалась из отколовшегося при столкновении с Тейей куска земной мантии, можно предположить, что наша планета также располагает громадными скрытыми запасами воды глубоко внутри.
Назад: Вода: краткая биография
Дальше: Зримый круговорот воды