Книга: Гравитация От хрустальных сфер до кротовых нор
Назад: Дополнения
Дальше: 2. Материальные источники

1. Скалярные, векторные и тензорные поля

В основном тексте и далее в Дополнениях мы используем понятия скалярного, векторного и тензорного полей. Чтобы не было дискомфорта при встрече с этими терминами, дадим некоторые пояснения. Лучше начать с вектора. В обычном 3–мерном пространстве он определяется тремя компонентами — проекциями на оси х, у, z. Если представить себе n–мерное пространство, то для определения в нем вектора нужно задать набор n компонент. Тогда говорят, что задано поле вектора и его обозначают, например, va, где а пробегает все координаты, от 1 до n, в общем случае, если мы их пронумеровали А все n значений va и есть те самые п компонент, часто их записывают в виде строки va = [v1, v2, …, vn-1, vn] или столбца
Величина va (набор значений) с одним индексом называется тензором 1–го ранга. Поле скаляра, в отличие от вектора, в каждой точке пространства, независимо от его размерности, имеет одну компоненту (функцию от пространственных координат) и записывается как величина без индексов, скажем, ν. Скаляр, как величина без значков, является тензором нулевого ранга, В тексте очень часто встречается понятие метрического тензора gab, который и описывает гравитационное поле. Теперь, имея представление о векторе и скаляре, как о тензорах, смело можно говорить, что метрика — это тензор 2–го ранга и все его компоненты объединены в матрицу. В 4–мерном пространстве–времени это выглядит так:
В силу симметрии gab = gba независимых компонент из 16–ти остаётся 10. Поле метрического тензора задано, если в каждой точке пространства–времени задано 10 функций, представляющих эту матрицу. Аналогичные рассуждения справедливы для других тензоров второго ранга. Если бы мы хотели рассмотреть какой-нибудь тензор 3–го ранга, мы должны были представить величину с 3–мя индексами, а ей сопоставить 3–мерную матрицу (куб). Важно отметить, что все тензоры обладают общим свойством: при преобразованиях координат они преобразуются по специальному тензорному закону, сохраняя свою прежнюю структуру. Нетензорные величины при преобразованиях координат обычно приобретают дополнительные (по отношение к тензорным) слагаемые.
Назад: Дополнения
Дальше: 2. Материальные источники