Проверка ОТО на масштабах планетных систем
Теперь вспомним, что основой ОТО как метрической теории является принцип эквивалентности и постулат движения по геодезическим. Известно, что этим основам, если они установлены с абсолютной точностью, удовлетворяют лишь «чисто» метрические теории (с небольшими оговорками), т, е. теории, где гравитационное поле представлено только метрическим тензором. Оказывается, что ОТО это лишь простейший вариант метрической теории. Нисколько не нарушая этих основ, можно представить бесчисленное (без преувеличения) множество метрических теорий. Как тогда можно изменить теорию? За что же зацепиться в этом случае? Конечно, лишь эксперимент и наблюдения могут поставить все на место. Но для классификации альтернативных предложений нужна своя стратегия.
Работу над стандартным формализмом для проверки альтернативных моделей гравитации начал ещё в 1922 году Артур Эддингтон (1882–1944). Усовершенствование этого формализма, так или иначе, продолжалось на протяжении десятилетий, а закончили дело американские физики Клиффорд Уилл и Кеннет Нордведт в 1972 году. Ими предложен так называемый параметризованный пост–ньютоновский (ΡΡΝ) формализм. Он создан для теорий либо чисто метрических, либо с эффективной метрикой, представляющей искривлённое пространство–время, где происходят физические взаимодействия. Рассматриваются лишь отклонения от механики Ньютона, поэтому формализм применим только в слабых полях. В общем случае существует 10 ΡΡΝ–параметров. В случае ОТО 2 из них равны единице, а остальные 8 — нулю.
Чем полезен ΡΡΝ–формализм в проверке ОТО? Новые технологии позволяют достаточно точно отслеживать движения небесных тел, и современная стандартная проверка происходит следующим образом. С помощью уравнений ОТО именно в ΡΡΝ виде рассчитываются траектории тел в Солнечной системе. Этот вид оказывается наиболее конструктивным. Затем их сравнивают с данными наблюдений. Современный результат таков, что соответствие теоретических ΡΡΝ параметров ОТО наблюдаемым подтверждается с точностью от десятых до сотых долей процента — это очень высокая точность.
Другие точные тесты — это наблюдения двойных пульсаров: систем, состоящих из двух нейтронных звёзд, их известно сейчас около десятка. Кроме этого, есть системы, состоящие из радиопульсара и белого карлика, они тоже подходят для тестов. На основании этих наблюдений вычисляются параметры орбит. Оказывается, что отклонения от кеплеровских значений совпадают с отклонениями, предсказанными ОТО, также с точностью до десятых и сотых долей процента. Специалисты испытывают большой оптимизм в перспективах повышения точности при изучении именно двойных пульсаров. Он основан на том, что нейтронные звезды имеют размеры в десятки километров в системах с размерами орбит в миллионы километров. В таких системах звезды фактически являются точечными объектами. Их внутреннее строение, внутренние движения, а также деформации практически не влияют на траектории. В отличие от этого, в Солнечной системе все эти факторы, а также влияние многочисленных «соседей» существенно ограничивают повышение точности. Резюмируя, можно сказать, что на масштабах планетных систем ОТО подтверждена с высокой точностью и точность измерений будет повышаться.