ГЛАВА 8. ОДНО КОЛЬЦО, ЧТОБЫ ПРАВИТЬ ВСЕМ…
Вообще-то, я не люблю преувеличений и уверена, что великие события и достижения говорят сами за себя. В Америке нежелание приукрашивать — не популярный подход, ведь люди здесь так часто используют превосходные степени, что даже обычная похвала без эпитета «самый» иногда воспринимается как принижение заслуг. Мне часто советуют добавить к похвальному отзыву несколько красивостей. Но в случае с БАКом я не стану экономить на эпитетах и сразу скажу, что это громадное достижение. БАК невероятно красив и притягателен, а уровень примененных в нем технологий просто ошеломляет.
В этой главе мы начнем знакомство с этим невероятным аппаратом. В следующей главе совершим путешествие по кольцу БАКа, а еще через несколько глав попадем в мир экспериментов, которые регистрируют все, что в нем происходит. Но пока мы сосредоточимся на самом агрегате, способном выделять, ускорять и сталкивать между собой протоны высоких энергий, которые, как мы надеемся, откроют перед нами новые миры.
БОЛЬШОЙ АДРОННЫЙ КОЛЛАЙДЕР
В первый раз, когда мне случилось побывать на БАКе, он внушил мне восторг и благоговение, несмотря на то что я много раз бывала на коллайдерах и видела установленное на них оборудование и детекторы. Но здесь все было в другом масштабе. Мы вошли, надели каски, прошли в тоннель, остановились у громадной выемки, куда предполагалось опустить детектор ATLAS, и наконец добрались до самой экспериментальной установки. Она все еще строилась, и ATLAS пока стоял на виду (позже его установили на место и закрыли).
Ученый во мне, разумеется, не склонен был видеть в этом невероятно точном и сложном техническом чуде произведение искусства, но я все же не удержалась и полезла за фотоаппаратом. Сложность, выверенность да и просто масштаб установки, не говоря уже о сочетании цветов — трудно передать словами, — все в целом производит сильнейшее впечатление.
Надо сказать, что люди искусства реагировали на это зрелище точно так же. Коллекционер Франческа фон Габсбург привезла с собой на строительство профессионального фотографа, и снимки получились настолько красивыми, что их опубликовал известный журнал Vanity Fair. Кинопродюсер Джесс Дилан увидел в Большом адронном коллайдере громадный и совершенно замечательный арт–проект — «высшее достижение», к величию и красоте которого хочется приобщиться. Джесс попытался передать свои впечатления при помощи видео.
Актер и ведущий Алан Алда сравнил коллайдер с одним из древних чудес света. Физик Дэвид Г росс — с египетскими пирамидами. Инженер и предприниматель Элон Маек — один из основателей системы PayPal, руководитель компании Tesla, выпускающей электромобили, создатель и руководитель SpaceX (компании — производителя ракет и космических кораблей, которые будут доставлять грузы на Международную космическую станцию) — сказал о БАКе: «Определенно, это одно из величайших достижений человечества».
Мне приходилось слышать подобные утверждения от людей самых разных профессий. Интернет, гибридные автомобили, «зеленая» энергетика и космические путешествия — лишь некоторые из наиболее интересных и активных на сегодняшний день областей прикладных научных исследований. Но попытка познать фундаментальные законы Вселенной даже в этом ряду стоит особняком, а масштабы исследований и экспериментов, предпринимаемых в этой области, поражают. И художники, и ученые стремятся познать мир и разгадать загадку его происхождения. Конечно, можно спорить о том, что именно считать величайшим достижением человечества, но я не думаю, что кто-то усомнится, что стремление человека заглянуть за грань доступного и выяснить, что там, — одна из самых замечательных его черт. Только человеку свойственно стремиться к неведомому.
Столкновения, которые мы планируем изучать на БАКе, сродни тем, что происходили в первую триллионную долю миллисекунды после Большого взрыва. Они расскажут нам о малых расстояниях, о характере вещества и взаимодействий в самом начале времен. Вообще, коллайдер можно представить этаким супермикроскопом — ведь он позволяет изучать частицы и взаимодействия на невероятно малых расстояниях порядка одной десятой от одной тысячной от одной триллионной доли миллиметра.
БАК достигает результатов на этом крохотном масштабе за счет того, что столкновения частиц в нем проходят при таких высоких энергиях, какие до сих пор на Земле не имели места; энергия столкновения в БАК примерно в семь раз выше, чем энергия столкновения в мощнейшем из прежних коллайдеров — тэватроне, расположенном в Батавии (штат Иллинойс). В главе 6 я уже объяснила, почему квантовая механика и волновые процессы в ней требуют таких высоких энергий для исследования столь крохотных расстояний. Кроме того, светимость (интенсивность столкновений частиц) нового коллайдера будет в 50 раз выше, чем у тэватрона, поэтому там гораздо чаще будут происходить редкие события, позволяющие проникнуть во внутреннюю суть природы, и вероятность обнаружения таких событий, соответственно, будет намного выше.
Хоть я и не люблю преувеличений, но БАК принадлежит к миру, описывать который можно только превосходными степенями. Он не просто огромен: БАК — самая крупная в истории человечества машина. В нем не просто холодно: температура в 1,9 К (то есть на 1,9 градуса выше абсолютного нуля), необходимая для работы сверхпроводящих магнитов, делает соответствующие участки самыми холодными известными человеку протяженными областями во Вселенной; там холоднее, чем в космосе. Магнитное поле в БАКе не просто сильное: сверхпроводящие дипольные магниты генерируют поле в 1 000 000 раз более мощное, чем магнитное поле Земли, и это самые сильные из когда-либо производившихся магнитов.
Рекорды на этом не заканчиваются. Вакуум в протонных каналах БАКа (давление там составляет 10 триллионных долей атмосферного) — это самый глубокий вакуум, когда-либо достигнутый в таком объеме. Энергия столкновений — самая высокая из всех, когда-либо имевших место на Земле, что позволяет нам изучать взаимодействия, происходившие в ранней Вселенной, ближе чем когда-либо к моменту Большого взрыва.
Кроме того, в БАКе задействованы громадные энергии. Одно только магнитное поле эквивалентно по энергии паре тонн тринитротолуола, да и каждый из протонных пучков несет в себе примерно 10% от этого количества. Эта энергия сосредоточена в одной миллиардной доле грамма вещества — крохотной пылинке, не видимой при обычных обстоятельствах даже под микроскопом. После окончания работы с пучком аппарат сбрасывает эту энергию в графитовый цилиндр восьмиметровой длины и метрового диаметра, заключенный в бетонную оболочку весом 1000 т.
Невозможные ранее результаты, достигнутые на БАКе, стали возможны благодаря новейшим технологиям. Такие технологии недешевы, а превосходные степени, как правило, зримо отражаются на стоимости. БАК можно признать самой дорогой из всех когда-либо построенных машин. Примерно две трети стоимости установки оплатил Европейский центр ядерных исследований, бюджет которого формируют 20 стран–участников (размеры взноса каждой страны зависят от средств и колеблются от 20% для Германии до 0,2% для Болгарии). Оставшуюся треть стоимости строительства оплатили страны, не входящие в организацию, в том числе США, Япония и Канада. Кроме того, Центр взял на себя 20% расходов на экспериментальные установки, которые финансируются международными научными коллективами. Так, в 2008 г., когда строительство установки было в основном завершено, на детекторах CMS и ATLAS работало более тысячи американских ученых, и США вложили в БАК 531 млн долларов.
КАК НАЧИНАЛСЯ БАК
Европейский центр ядерных исследований, где разместился Большой адронный коллайдер, — это исследовательская организация, где одновременно реализуется множество научных программ. Однако основные ресурсы Центра, как правило, сосредоточены в одной флагманской программе. В 1980–е гг. такой программой был протон–антипротонный коллайдер SppS; именно на нем были об: наружены частицы — переносчики фундаментальных взаимодействий, без которых Стандартная модель физики элементарных частиц была бы невозможна. В ходе знаменитых экспериментов 1983 г. были открыты слабые калибровочные бозоны — переносчики слабого взаимодействия (два по–разному заряженных W–бозона и нейтральный Ζ–бозон). Именно их на тот момент не хватало в Стандартной модели, и это открытие принесло ведущим ученым проекта SppS Нобелевскую премию.
Еще в ходе работы на SppS ученые и инженеры начали планировать строительство нового коллайдера, получившего название LEP; в нем предполагалось сталкивать электроны и соответствующие им античастицы — позитроны, что позволяло изучать слабое взаимодействие и Стандартную модель в мельчайших подробностях. Эти планы были реализованы в 1990–е гг.; благодаря высочайшей точности измерений на LEP и исследованию миллионов событий с участием слабых калибровочных бозонов физики очень многое узнали о взаимодействиях частиц Стандартной модели.
LEP представлял собой кольцевой коллайдер с длиной окружности 27 км. Электроны и позитроны, кружа по кольцу, раз за разом получали все новые порции энергии. Электронный пучок с обычной для T. F. P энергией примерно в 100 ГэВ на каждом обороте терял около 3% своей энергии. Потери вроде бы невелики, но, если бы мы захотели разогнать электроны в этом тоннеле до более высоких энергий, такие потери не позволили бы нам это сделать. При увеличении энергии пучка в 10 раз энергетические потери при кольцевом движении выросли бы в 10 000 раз, и эффективность ускорителя очень быстро упала бы до неприемлемого уровня.
Поэтому, когда LEP только еще проектировался, ученые уже думали о следующем флагманском проекте Европейского центра ядерных исследований, который, по идее, должен был оперировать еще более высокими энергиями. С учетом неприемлемых энергетических потерь при разгоне электронов было ясно, что если Центр захочет построить следующий, еще более высокоэнергетический ускоритель, то работать он должен будет с протонами, которые намного тяжелее электронов и потому излучают намного меньше. Физики и инженеры, проектировавшие LEP, прекрасно знали о такой перспективе и построили кольцевой тоннель для LEP достаточно широким, чтобы в будущем, когда электронно–позитронная машина будет остановлена и разобрана, он мог вместить гипотетический протонный коллайдер.
Сегодня, спустя около 25 лет, протонные пучки носятся по тоннелю, построенному первоначально для ускорителя LEP (рис. 24). Большой адронный коллайдер на пару лет отстает от графика и уже процентов на 20 вышел из первоначального бюджета. Прискорбно, конечно, но, может быть, все не так уж страшно — ведь это самый крупный, самый международный, самый высокоэнергетический, самый амбициозный эксперимент из всех, проводившихся когда-либо. Сценарист и режиссер Джеймс Брукс, услышав о задержках и проблемах при строительстве БАКа, шутливо сказал: «Я знаю людей, у которых примерно столько же времени уходит на то, чтобы кое-как наклеить обои. Не исключено, что разгадка тайн Вселенной — несколько более достойная цель».
РИС. 24. Примерное расположение Большого адронного коллайдера. Белым условно обозначен подземный тоннель, дальше видны Женевское озеро и горы. (Фото предоставлено Европейским центром ядерных исследований.)
БРАТСТВО КОЛЕЦ
Протоны всюду — и вокруг, и внутри нас. Как правило, однако, они связаны в ядрах атомов, окруженных к тому же электронами. Они не изолированы от электронов и не коллимированы (то есть не выстроены параллельными рядами) в пучках. БАК первым делом выделяет и разгоняет протоны, а затем направляет пучок частиц навстречу уготованной им судьбе. При этом многочисленные рекордные возможности БАКа оказываются совсем не лишними.
Первый шаг в подготовке протонных пучков — нагревание атомов водорода; при этом атомы теряют электроны и остаются
одни протоны (ядро атома водорода — это, собственно, и есть протон). Магнитные поля задают этим протонам направление движения и формируют из них пучки. Затем БАК в несколько этапов разгоняет эти пучки. Происходит это в определенных зонах; протоны, двигаясь от одного «акселератора» к другому, всякий раз увеличивают свою энергию, пока, наконец, не отклоняются от одного из двух параллельных пучков, чтобы столкнуться.
Первая фаза ускорения происходит в линейных ускорителях типа Linac — на прямых участках тоннеля, где протоны разгоняются по прямой при помощи радиоизлучения. В пике стоячей радиоволны связанное с ней электрическое поле разгоняет протоны. Затем пучок протонов вынуждают выйти из поля, чтобы при его ослаблении протоны не замедлились. Далее, при приближении к очередному пику волны, протоны возвращаются в поле и вновь ускоряются — и так раз за разом. По существу, электромагнитная волна здесь периодически подталкивает протоны — примерно так же, как вы подталкиваете ребенка, раскачивая его на качелях. Энергия протонов растет, но на этой — первой — стадии ускорения частицы получают лишь крохотную ее долю.
На следующей стадии магниты направляют протоны в систему колец, где они продолжают ускоряться. Каждый из этих циклических ускорителей действует примерно так же, как описанный выше линейный ускоритель, однако кольцевая форма позволяет им подталкивать протоны и повышать тем самым их энергию на каждом круге в тысячи раз. Промежуточные кольцевые ускорители передают частицам значительную часть энергии.
«Братство колец», ускоряющее протоны перед подачей их в большое кольцо БАКа, состоит из протонного синхротрона–разгонщика (protonsynchrotronbooster, PSB), обеспечивающего разгон частиц до 1,4 ГэВ, протонного синхротрона (protonsynchrotron, PS), поднимающего энергию частиц до 26 ГэВ, и протонного суперсинхротрона (superprotonsynchrotron, SPS), доводящего ее до так называемой энергии впрыска, равной 450 ГэВ (маршрут путешествия протона можно увидеть на рис. 25). Именно с такой энергией протоны попадают в 27–километровый тоннель на последнюю стадию ускорения.
Два ускорительных кольца из перечисленных «пришли» из прежних проектов Европейского центра ядерных исследований. Старейшее из них — кольцо PS — в ноябре 2009 г. отметило золотой юбилей, a PSB в 1980–е годы играл важнейшую роль в предыдущем крупном проекте — ускорителе LEP.
После SPS для протонов начинается двадцатиминутная фаза впрыска, или инжекции. За это время пришедшие из SPS протоны с энергией 450 ГэВ разгоняются в большом кольце БАКа до полной энергии. Протоны в тоннеле движутся двумя отдельными пучками в противоположных направлениях по тонким трехдюймовым трубам, протянувшимся на все 27 км подземного кольца.
РИС. 25. Путь, который проходит протон в процессе ускорения в БАКе
В тоннеле шириной 3,8 м, построенном в 1980–е гг., протонные пучки проходят сегодня последнюю стадию ускорения. В тоннеле светло и прохладно, он достаточно просторен. Мне довелось прогуляться по нему еще в те времена, когда коллайдер только строился. Я прошла по нему совсем немного, но на эти несколько шагов потребовалось гораздо больше времени, чем те 89 миллионных долей секунды, за которые проходит все кольцо длиной 26,6 км ускоренный высокоэнергетический протон, летящий со скоростью в 99,9999991% скорости света.
Тоннель находится на глубине около 100 м под землей; в разных местах глубина его заложения колеблется от 50 до 175 м. Это защищает поверхность земли от излучения и означает также, что во время строительства не пришлось сносить все фермы и сельхозугодья над местом прохождения тоннеля. Тем не менее в 1980–е гг. вопросы имущественных прав задержали строительство тоннеля, тогда еще для LEP. Проблема в том, что во Франции землевладелец имеет права не только на сельскохозяйственные угодья, которые обрабатывает, но и на недра под своим участком, вплоть до центра Земли. Тоннель удалось прорыть только после того, как французские власти позаботились об этом и подписали Декларацию об общественной пользе (Declaration d’Utilite Publique), сделав таким образом скальное основание — и, в принципе, магму под ним тоже — общественной собственностью.
Физики спорят о том, зачем тоннель сделали наклонным, а его глубину соответственно — неравномерной. То ли дело в геологии, то ли целью было дополнительно защитить поверхность от излучения, но так или иначе наклон тоннеля оказался полезен в обоих отношениях. Неоднородный рельеф района поставил перед строителями тоннеля сложную задачу и, безусловно, повлиял на его расположение и форму. Под этой местностью залегают в основном осадочные горные породы, но под речными и морскими отложениями имеются водоносные слои — гравий, песок и глина, и строить тоннель в таких грунтах вряд ли стоило. Таким образом, наклон помогает тоннелю все время оставаться в прочных скальных породах. Благодаря этому, кстати, одна из секций тоннеля у подножья живописных гор Юра на окраине Центра находится чуть ближе к поверхности, так что поднимать и опускать грузы и людей по вертикальной шахте в этом месте было немного проще (и дешевле).
Ускоряющие электрические поля в главном тоннеле организованы не совсем правильным кольцом. Большое кольцо БАКа состоит из восьми больших дуг, перемежающихся восемью семисотметровыми прямыми участками. Каждый из восьми секторов можно независимо нагревать и охлаждать, что очень облегчает ремонт и обслуживание. Впрыснутые в тоннель протоны ускоряются на каждом из коротких прямых участков при помощи радиоволн примерно так же, как они разгонялись на предыдущих этапах, пока не достигли энергии впрыска. Ускорение происходит на ускоряющих промежутках, содержащих радиосигнал частотой 400 МГц — той самой, которой вы пользуетесь при дистанционном открывании дверцы автомобиля. Сгусток протонов, проходя через ускоряющий промежуток, получает приращение энергии всего лишь в 485 миллиардных долей ТэВ. На первый взгляд это немного, но ведь протоны делают полный круг по кольцу БАКа 11000 раз в секунду! Таким образом, всего за 20 минут удается поднять энергию протонов в пучке от энергии впрыска (450 ГэВ) до целевой энергии (7 ТэВ), то есть примерно в 15 раз. Часть протонов теряется из-за столкновений и просто случайных отклонений, но большая их часть будет кружить по кольцу еще примерно 12 часов, прежде чем поредевший пучок пора будет сбрасывать в грунт и заменять свежим пучком только что впрыснутых протонов.
Протоны, циркулирующие по кольцу БАКа, распределены по его окружности неравномерно. Их посылают по кольцу так называемыми сгустками — всего их 2808 — по 115 млрд протонов в каждом. Вначале каждый сгусток представляет собой вытянутую группу протонов длиной 10 см и шириной 1 мм; расстояние между соседними сгустками составляет примерно 10 м. Так проще, потому что каждый сгусток ускоряется отдельно, сам по себе. Есть и еще одно преимущество: такая группировка протонов гарантирует, что сгустки частиц взаимодействуют с промежутками по крайней мере 25-75 не; этого достаточно, чтобы каждое столкновение двух сгустков записывалось отдельно. В сгустке во много раз меньше протонов, чем в целом пучке, поэтому и разбираться в столкновениях намного проще, ведь одновременно могут сталкиваться только протоны одного сгустка, а не всего пучка сразу.
ДИПОЛЬНЫЕ КРИОГЕННЫЕ МАГНИТЫ
Разгон протонов до столь высоких энергий — безусловно, серьезное достижение. Но самой сложной в техническом отношении задачей при строительстве коллайдера стала разработка и изготовление мощных магнитов, которые должны удерживать протоны на правильной кольцевой траектории. Без магнитов протоны летели бы по прямой, а для удержания высокоэнергетических протонов в кольце магнитное поле должно быть чрезвычайно мощным.
Тоннель БАКа очень велик, поэтому главной инженерно–технической задачей оказалось изготовление мощнейших магнитов в промышленных масштабах, то есть практически серийно. Сильное поле требуется для удержания высокоэнергетических протонов в тоннеле. Чем выше энергия протонов, тем более мощные магниты нужны для удержания их в тоннеле — и тем больше должен быть диаметр ускорительного кольца, чтобы протоны могли поворачивать по нему плавно. Размер кольца был известен заранее, так что целевая энергия протонов в нем определяется максимальной мощностью магнитного поля, которой удастся достигнуть.
Американский сверхпроводящий суперколлайдер SSC, если бы он был достроен, располагался бы в гораздо большем по протяженности тоннеле длиной 87 км (его даже успели частично проложить) и по проекту должен был разгонять протоны до энергии 40 ТэВ, что почти втрое превышает целевую энергию проекта БАКа. Такая значительная разница объясняется тем, что эта установка разрабатывалась заново, практически с нуля и проектировщиков не ограничивали размеры уже существующего тоннеля и, соответственно, не слишком реалистичные требования по поддержанию мощнейшего магнитного поля. Однако предложенный европейцами план имел немало практических преимуществ, начиная от существующего тоннеля и заканчивая развитой научной, инженерной и транспортной инфраструктурой Европейского центра ядерных исследований.
Едва ли не самое сильное впечатление во время визита в Центр на меня произвел прототип гигантского цилиндрического магнита для БАКа (на рис. 26 он изображен в сечении). Таких магнитов вокруг разгонного кольца БАКа установлено немало —1232 штуки, но и каждый из них в отдельности — это нечто грандиозное. Это махина весом 30 т и длиной 15 м. Надо заметить, что длина магнита определена относительно небольшой шириной тоннеля — и, конечно, необходимостью перевозить готовые магниты по европейским дорогам. Каждый из магнитов обошелся в 700 000 евро; соответственно, общая стоимость одних только магнитов в БАКе превысила миллиард долларов.
Тонкие трубки, по которым разгоняются протонные пучки, проложены внутри дипольных магнитов, которые установлены вплотную один за другим и тянутся, таким образом, внутри тоннеля по всей его длине. Они генерируют магнитное поле напряженностью до 8,3 Тл — это примерно в тысячу раз выше, чем напряженность поля, создаваемого магнитиком на холодильнике. По мере того как энергия протонов в пучке увеличивается с 450 до 7 Тэв, напряженность магнитного поля, которое должно удерживать все более энергичные протоны на их кольцевом маршруте, возрастает с 0,54 до 8,3 Тл.
Магнитное поле, которое генерируют эти магниты, настолько мощно, что сами магниты не удержались бы на месте, если бы не специальные крепления. Отчасти сила, действующая на магнит, компенсируется за счет геометрии витков, но в конечном итоге магниты удерживают на месте специально спроектированные стальные «воротники», или хомуты, толщиной 4 см.
Мощные магниты БАКа были бы невозможны без сверхпроводящих технологий. Инженеры БАКа пользовались при проектировании технологиями, разработанными для американского проекта SSC, для тэватрона Лаборатории имени Ферми, расположенной в штате Иллинойс, а также для немецкого электронно–позитронного коллайдера в гамбургском ускорительном центре DESY.
РИС. 26. Схема устройства дипольного криомагнита. Протоны удерживаются на кольцевом маршруте внутри тоннеля при помощи 1232 таких сверхпроводящих магнитов
В обычных условиях провода (к примеру, медные провода, из которых сделана проводка в вашем доме) имеют сопротивление. Это означает, что при прохождении по ним электрического тока теряется энергия. А вот сверхпроводящие проводники не рассеивают энергию, и электрический ток проходит по ним без помех. Витки сверхпроводящей проволоки способны генерировать очень мощные магнитные поля; более того, такое поле, раз установившись, будет поддерживаться без дополнительного притока энергии.
Каждый диполь БАКа содержит катушку ниобиево–титанового сверхпроводящего кабеля, каждый из которых свит из тончайших проволочек толщиной всего шесть микрон — намного тоньше человеческого волоса. Всего на сооружение БАКа пошло 1200 т этой замечательной проволоки. Если размотать, ее длина сравнялась бы с длиной орбиты Марса.
В процессе работы сверхпроводящие диполи должны быть очень холодными, так как сверхпроводимость «включается» лишь при достаточно низких температурах. Вокруг сверхпроводящих кабелей поддерживается температура на 1,9 градуса выше абсолютного нуля, то есть на 271 градус ниже температуры замерзания воды. Это даже ниже температуры фонового микроволнового излучения в открытом космосе, которая составляет 2,7 К. В тоннеле БАКа находится самая холодная протяженная область во Вселенной — по крайней мере насколько нам известно. Из-за сверхнизких температур магниты БАКа называют криодиполями.
Помимо невероятных «проволочных» технологий, использованных в магнитах БАКа, нельзя не упомянуть и систему охлаждения (криогенную систему), которая сама по себе является серьезным достижением и заслуживает самых восторженных эпитетов. Естественно, это самая большая в мире система охлаждения. Сверхнизкую температуру в ней обеспечивает проточный гелий. Магниты, нуждающиеся в охлаждении, окружает специальная оболочка, в которой содержится примерно 97 т жидкого гелия. Это не обычный гелий в виде газа, а гелий, который при помощи давления поддерживают в состоянии сверхтекучести. Сверхтекучий гелий не обладает вязкостью обычных материалов и способен очень эффективно рассеивать все тепло, выделяемое в дипольной системе. Сначала охлаждают 10000 т жидкого азота, который, в свою очередь, охлаждает 130 т жидкого гелия, циркулирующего в диполях.
Не все части БАКа располагаются под землей. У коллайдера есть и наземные здания, где размещены оборудование, электроника и рефрижераторные установки. Традиционная морозильная установка охлаждает гелий до 4,5 К, а затем происходит окончательное охлаждение со снижением давления. Этот процесс (также, как и согревание) занимает около месяца. Ясно, что при любом включении или выключении коллайдера, а также при любой попытке ремонта на согревание и охлаждение уходит много дополнительного времени.
Если в системе случается какой-то сбой — к примеру, где-то выделилось небольшое количество тепла и чуть поднялась температура, — происходит так называемый квенч, или аварийное расхолаживание; это означает, что сверхпроводимость потеряна. Вообще, потеря сверхпроводимости может иметь катастрофические последствия, поскольку вся энергия магнитов высвободится разом. Поэтому в БАКе существует специальная система обнаружения квенчей и распределения высвобождающейся энергии. Эта система следит, чтобы нигде не возникало разности потенциалов: ведь при сверхпроводимости ее быть не может. Если такое случается, то меньше чем за секунду энергия высвобождается всюду и диполь выходит из сверхпроводящего состояния.
Но даже с применением сверхпроводящих технологий для генерации магнитного поля напряженностью 8,3 Тл требуются громадные токи. Ток в криодиполях доводится почти до 12 000 А, что в 40 000 раз превышает ток в горящей у вас на столе электрической лампочке.
Учитывая токи и охлаждение, неудивительно, что работающий БАК потребляет громадное количество электроэнергии — примерно столько же, сколько небольшой город, такой как близлежащая Женева. Чтобы избежать лишних расходов на электричество, на зимние месяцы коллайдер останавливают — зимы в Швейцарии холодные, и цены на электроэнергию заметно выше летних. (Исключение было сделано для пробного пуска в 2009 г.) У такой политики есть и дополнительное преимущество—ученые и инженеры получают замечательные рождественские каникулы.
СКВОЗЬ БАКУУМ К СТОЛКНОВЕНИЯМ
Наконец, еще одно качество БАКа, заслуживающее превосходных оценок, — вакуум в трубах, по которым циркулируют протоны. Чтобы сохранить охлажденный гелий, систему необходимо в максимальной степени освободить от лишнего вещества, потому что любые посторонние молекулы могут передавать тепло и энергию наружу. Самое главное, из областей, по которым путешествует протонный пучок, следует удалить всякие газы. Если в трубке присутствует газ, протоны будут сталкиваться с его молекулами, и правильная циркуляция протонного пучка нарушится. Поэтому давление внутри пучка чрезвычайно мало: оно в десять триллионов раз меньше атмосферного и соответствует давлению на высоте 1000 км над поверхностью Земли, где воздух чрезвычайно разрежен. Чтобы получить пространство, пригодное для разгона протонных пучков, из БАКа пришлось откачать 9000 м3 воздуха.
Но даже при таком невероятно низком давлении в каждом кубическом сантиметре пространства внутри разгонной трубки присутствует около трех миллионов молекул газа, так что протоны иногда все же сталкиваются с молекулами газа. И если в сверхпроводящий магнит попадет достаточное количество протонов, чтобы нагреть его, произойдет все тот же квенч и магнит выйдет из состояния сверхпроводимости. Для удаления случайно «отбившихся» от пучка частиц вдоль траектории пучка расставлены углеродные коллиматоры, которые поглощают все, что не попадает в трехмиллиметровую апертуру (вполне достаточную по размеру для прохождения пучка толщиной около 1 мм).
И все же собрать протоны в сгусток миллиметровой толщины — непростая задача. Выполняют ее другие магниты, квадруполъные; они весьма эффективно сжимают и фокусируют пучок. В тоннеле БАКа 392 таких магнита. Кроме того, квадрупольные магниты в нужный момент отклоняют два протонных пучка с их независимых траекторий, чтобы они могли столкнуться.
Пучки сталкиваются не в точности на встречных курсах, не совсем лоб в лоб, а под крохотным углом примерно в одну тысячную радиана (около 0,06 градусов). Делается это для того, чтобы за один раз в столкновении участвовало лишь по одному сгустку из каждого пучка; тогда в остальном пучки остаются нетронутыми.
Когда сталкиваются два сгустка из двух циркулирующих по тоннелю пучков, сотня миллиардов протонов из одного пучка сходится «врукопашную» с сотней миллиардов протонов из другого. На квадрупольные магниты возлагается чрезвычайно сложная задача фокусирования обоих пучков именно в тех областях, где должны происходить столкновения и где, соответственно, размещается экспериментальное оборудование для регистрации событий. В этих местах магниты сжимают пучки до крохотной толщины 16 микрон. Пучки и должны быть чрезвычайно тонкими и плотными, чтобы сто миллиардов протонов одного сгустка, проходя сквозь второй сгусток, с как можно большей вероятностью встретились хотя бы с одним из ста миллиардов его протонов.
Большая часть протонов сгустка не увидит встречных протонов на своем пути, несмотря на то что пучки встречаются практически в точке. Индивидуальный протон — это крохотная частица, диаметр которой составляет всего около одной миллионной доли нанометра. А значит, несмотря на то что оба сгустка сжаты до толщины 16 микрон, при каждой встрече двух сгустков всего около 20 протонов испытывают лобовые столкновения со встречными протонами.
На самом деле это очень хорошо. Если бы одновременно происходило слишком большое число столкновений, разобраться в данных было бы трудно. Было бы невозможно понять, какие частицы получились при каком именно столкновении. Но плохо также, если бы столкновений не происходило вовсе. Сфокусировав сто миллиардов протонов в «иглу» именно такой толщины, конструкторы БАКа получили оптимальное число событий на одно столкновение сгустков.
Столкновение двух протонов, если уж оно имеет место, происходит почти мгновенно — за время примерно на 25 порядков меньше секунды. Это означает, что время между группами протонных столкновений практически полностью определяется частотой встречи протонных сгустков, которые в полном рабочем режиме БАКа сталкиваются каждые 25 наносекунд. Иначе говоря, пучки пересекаются больше 10 млн раз в секунду! При такой частоте БАК генерирует громадное количество информации: в среднем за секунду происходит около миллиарда событий. К счастью, промежутки между столкновениями сгустков достаточно велики, чтобы компьютеры могли отслеживать отдельные интересные события, не путая между собой столкновения частиц из разных сгустков.
По существу, исключительные параметры БАКа должны гарантировать одновременно максимальную возможную энергию столкновений и максимальное число событий, которые можно аккуратно отследить. Большая часть энергии бесконечно кружит по тоннелю, и только иногда происходят столкновения, достойные внимания ученых. Несмотря на немалую суммарную энергию пучков, энергия отдельного столкновения сгустков ненамного превышает кинетическую энергию нескольких комаров в полете. Все-таки здесь сталкиваются протоны, а не футболисты и не автомобили. БАК концентрирует энергию в крохотной области и в таких столкновениях элементарных частиц, за которыми могут следить ученые. Чуть позже мы поговорим о скрытых факторах, которые они надеются обнаружить, и об открытиях о природе вещества и пространства, которые, как надеются физики, будут сделаны в результате этих экспериментов.