Как Галилей повернул ход истории
Опровергнуть Аристотеля было нетрудно. Наблюдая за падением шаров, одинаковых по размеру, но различающихся по весу, скажем в десять раз, легко убедиться, что время падения различается вовсе не в десять раз. Похоже, уже в начале своих сомнений Галилей догадался, что быстроту падения определяет не сама по себе разница в тяжести. Вопрос был в том, что же определяет?
Надо отдать должное и Аристотелю, которого недаром относят к величайшим мыслителям. Вопрос-то первым поставил он. А значит, осмелился предположить, что на такой вопрос можно ответить. Ответ был неправильным, но было уже от чего отталкиваться. Неправильность Галилей заподозрил еще на уровне рассуждений. Если скорость падения пропорциональна тяжести тела, то, разделив тело на две части мысленно или реально и оставив части в непосредственной близости, следует ожидать, что каждая из частей будет падать медленнее, чем целое. Абсурдный вывод показывает неправоту Аристотеля, но отсюда совершенно не следует, что сам вопрос правилен, что на него возможен определенный ответ. В оправдание Аристотеля можно сказать, что он говорил о падении тел, различающихся только тяжестью. Но, скорее, ему было просто… некогда. Для него падение тел было лишь одним вопросом одной из многих наук, которыми он занимался. К главным его заслугам относят создание логики как дисциплины мышления. Через его школу логики прошел в студенческие годы и Галилей, и все люди науки той эпохи. Глядя же на Аристотеля из нашего времени, можно сказать, что мощный мыслитель слишком крепко держался за свой «здравый смысл», основанный, как обычно, на собственных жизненных наблюдениях. А двигаться вперед можно, опираясь не только на землю под ногами, но и на воздух под крыльями, как это делают птицы. Тогда можно преодолеть и непроходимый, скажем, сильно заболоченный, участок земли. Галилей фактически изобрел такой — крылатый — метод опоры в поиске научной истины.
Портрет Галилео Галилея. Художник Оттавио Леони,1624 г.
Научными амбициями Галилей не уступал Аристотелю, но стремился не столько вширь, сколько вглубь и ввысь. Он не претендовал на владение всеми науками, зато верил, что в основе всей физики Вселенной — и подлунной и надлунной — действуют некие общие фундаментальные законы, и верил, что может выяснить закон свободного падения. На выяснение потребовались десятилетия исследований. И понадобились еще годы, чтобы изложить свои результаты убедительно.
Основное его открытие состояло в том, что в пустоте все тела, независимо от их тяжести, падают с одинаковой быстротой, но что эта быстрота определяется не скоростью самой по себе, а скоростью изменения скорости, то есть ускорением.Его результаты, писал он, «столь новы и на первый взгляд столь далеки от истины, что если бы [он] не нашел способов осветить их и сделать яснее солнца, то предпочел бы скорее умолчать о них, нежели их излагать».
Главная новизна кроется в «пустоте». Мало того, что, согласно Аристотелю, пустоты нет и быть не может, как он «доказал» разными способами (например, говоря, что «пустота» — это «ничто», а ничто и не заслуживает никаких обсуждений). Важнее то, что Галилей пустоты никогда не видел — ни в каких своих опытах. Как же он мог что-либо о ней узнать?!
Это было потруднее, чем просто опровергнуть старый закон Аристотеля, опираясь на очевидный результат прямого опыта. И Аристотель опирался на очевидность. А Галилей знал, что «большинство людей и при хорошем зрении не видит того, что другие открывают путем изучения и наблюдения, отделяющих истину ото лжи, и что остается скрытым для большинства».
Так Галилей написал в своей последней книге, умудренный полувековым опытом научных размышлений и экспериментов. Но когда он, 25-летний, только начинал свои исследования, он надеялся на простую прямую проверку — проверку не столько Аристотеля, сколько своей собственной гипотезы.
Под впечатлением от физики Архимеда Галилей предположил, что быстрота падения, как и плавучесть, определяется не тяжестью тела, а его плотностью, то есть тяжестью единицы объема. Если взять два шара одинакового размера, сделанные из дерева и из свинца, и выпустить их из рук в воде, то деревянный шар не то что будет падать медленнее свинцового, он станет подниматься. А если дать им падать в воздухе? Оказалось, что деревянный шар вначале немного опередил свинцовый, но затем тяжелый догнал и перегнал его.Это Галилей зафиксировал в своей рукописи «О движении», которую… не опубликовал, — результат его эксперимента опровергал и закон Аристотеля, и собственную гипотезу. Тут надо было думать.
Этот странный рукописный результат побудил одного знаменитого историка сказать, что Галилей такого опыта вообще не делал; то был якобы риторический прием. Однако в наше время опыт воспроизвели, и результат совпал с Галилеевым. Объяснение нашлось не физическое, а физиологическое. Рука, удерживающая тяжелый шар, сжимает его крепче, чем другая рука — легкий, и крепче сжатой руке требуется немного большее время, чтобы разжаться, получив команду от головы. Поэтому легкий шар начинает свое падение раньше на то самое «немного».
О такой неловкости рук Галилей вряд ли догадывался, он думал о физике. Думал десять лет и понял, что изучать свободное падение впрямую не получится — слишком быстро оно происходит. Если шар падает с небольшой высоты, не успеваешь глазом моргнуть, не то что измерить. А падая с большой высоты, шар наберет большую скорость, и, значит, увеличится сопротивление воздуха. Всякий, державший в руках веер, знает: чем быстрее им махать, тем труднее.
Галилей придумал два способа «замедлить» свободное падение.
Один — пускать шары по наклонной плоскости. Чем меньше угол наклона, тем движение более растянуто и тем легче его изучать. Но можно ли скатывание назвать свободным падением? Назвать можно как угодно. Важнее реальное физическое родство. Чем глаже плоскость, тем свободнее движение. А чем больше угол наклона, тем движение больше похоже на падение, становясь обычным падением, когда плоскость станет вертикальной. Проделывая такие опыты с наклонной плоскостью, Галилей первым делом убедился, насколько неверной была его исходная гипотеза. Ведь он предполагал, что всякое тело падает с некой постоянной быстротой, подразумевая, что мера быстроты — это расстояние, проходимое за единицу времени. Так он мог думать лишь потому, что обычное свободное падение длится слишком недолго. Растянув падение в движение по пологой наклонной плоскости, легче заметить, что в начале движения тело движется медленнее, чем в конце. Значит, быстрота движения увеличивается?
А что такое вообще быстрота?В обыденном языке это — скорость, стремительность,а если еще быстрее, то можно сказать молниеносностьи даже мгновенность. Все эти слова в обыденном языке — синонимы. Но в языке науки — для определенности ее утверждений и для проверки их на опыте — нужны слова четко определенные — научные понятия. Пример четкой определенности слов давала математика, но всего лишь пример: в математике нет времени, движения, скорости, тяжести. Чтобы сказать свое новое слово в науке, нередко надо ввести в науку новые слова-понятия. Особенно не хватало научных понятий, когда Галилей начинал современную физику. Ему приходилось уточнять, что скорость — это изменение положения за единицу времени. А ускорение — изменение скорости за единицу времени. Надо сказать, что тогда точное измерение времени само по себе было проблемой. Галилей время взвешивал: открывал струйку воды в начале и закрывал в конце измеряемого интервала, а сколько времени утекло, определял на весах. Весы тогда были самым точным прибором.
Другой способ изучать свободное падение родился у Галилея в церкви, но не в связи с грехопадением Евы. Во время церковной службы, глядя поверх священника, он обнаружил удивительное явление. Вверху висела люстра и раскачивалась — по воле сквозняка — то сильнее, то слабее. Галилей сравнил длительность отдельных качаний, измеряя время ударами собственного пульса, и обнаружил, что большое колебание люстры длится столько же, сколько малое. С этого начались его исследования маятника, а это — любой груз, висящий на нити. Галилей наблюдал за колебаниями маятника, меняя грузы, длину нити и начальное отклонение.
Наблюдая сразу за двумя маятниками, он убедительно подтвердил свое церковное наблюдение. Если взять два одинаковых маятника, слегка отклонить грузы на разные углы и отпустить, то маятники будут колебаться в такт, совершенно синхронно: период малого колебания — тот же, что и большого. Ну а «если с какой-нибудь балки спустить два шнура равной длины, на конце одного прикрепить шарик из свинца, а на конце другого шарик из хлопка, одинаково отклонить оба, а затем предоставить их самим себе»? Период колебаний опять одинаков, хотя размах колебаний быстрее уменьшается у легкого шарика. В движении более легких тел сопротивление среды заметнее. Это ясно, если сравнить движения в воздухе и в воде: «мраморное яйцо опускается в воде во сто раз быстрее куриного яйца; при падении же в воздухе с высоты двадцати локтей оно опережает куриное яйцо едва ли на четыре пальца». Свободное колебание маятника мало похоже на свободное падение, но оба определяются тяжестью. А при уменьшении размаха колебаний уменьшится скорость маятника и, значит, уменьшится роль сопротивления среды.
Результаты своих опытов и рассуждений Галилей подытожил в новом законе природы: в пустоте все тела свободно падают с одним и тем же ускорением.
Ну а как же знаменитая история о том, как Галилей якобы сбрасывал шары с Пизанской «падающей» башни? А наблюдавшая за этим ученая публика якобы тут же после одновременного приземления разных шаров признала триумфальную победу Галилея над Аристотелем.
Это — легенда. Не было такого триумфа. Да и приземлиться одновременно разные шары не могли из-за сопротивления воздуха. А ученые коллеги, за малым исключением, охраняли авторитет Аристотеля, которого выучили еще студентами и преподавали новым поколениям. Именно неприятие его идей побудило Галилея, помимо современной физики, заняться еще и научно-популярной литературой. Его главные книги имеют форму бесед между тремя персонажами. Один — Симпличио — представляет взгляды почитателей Аристотеля. Второй — Сальвиати — самостоятельный исследователь, похожий на Галилея. А третий — Сагредо — похож на здравомыслящего человека, быть может, и не искушенного в науках, но готового выслушать обоих оппонентов и задать уточняющие вопросы, прежде чем решить, кто прав. Именно для таких читателей Галилей писал. Ради них он перешел с латыни — языка тогдашней учености — на живой итальянский язык, чтобы рассказать о драме идей, в которой сам участвовал, о слепой уверенности тех, кому все ясно, о духе сомнения в поисках истины и о способах установления истинных законов природы.
Историю о «падающей башне» впервые рассказал ученик Галилея в биографии, написанной спустя десятилетие после смерти учителя и полвека спустя после предположительных опытов. Ученик был физиком, а не историком, и когда он пришел в науку, было уже совершенно ясно, кто прав. Он, похоже, усмотрел автобиографическое свидетельство Галилея в словах его литературного персонажа:
Сальвиати. Аристотель говорит, что «шар весом в сто фунтов, падая с высоты ста локтей, достигнет земли прежде, чем однофунтовый шар пролетит один локоть». Я утверждаю, что они долетят одновременно. Делая опыт, вы увидите, что, когда больший достигнет земли, меньший отстанет на ширину двух пальцев. За этими двумя пальцами не спрятать девяносто девять локтей Аристотеля.
Сам Галилей нигде не утверждал, что сбрасывал шары с Пизанской башни. Для него гораздо важнее был новый закон свободного падения, чем опровержение старого. А движение шаров по наклонной плоскости и малые колебания маятников были гораздо убедительнее эффектных публичных демонстраций.