Новая вероятность
Новая вероятность принципиально отличалась от той, которую Максвелл положил в основу статистической физики, а Эйнштейн применил в задаче броуновского движения. Там речь шла об учете огромного числа факторов — например, толчков множества молекул. В подобных задачах нет практической возможности, да и надобности, следить за деталями движений всех молекул. Однако теоретически можно было думать, что каждая молекула движется неким определенным образом под воздействием толчков других молекул и соударений о стенки сосуда. Начиная с открытия радиоактивности, так думать уже не получалось. Радиоактивное ядро распадалось с некоторой вполне определенной вероятностью, казалось, независимо от окружения, и это не было результатом множества каких-то случайностей.
Устройство ядра, впрочем, еще долго оставалось непроницаемым, но уже поведение атомных электронов намекало на какую-то новую вероятность — вероятность перескока электрона с одной орбиты на другую. Ведь электрон мог перескочить с высокой орбиты на любую из нижних. Каждому перескоку соответствовала своя частота излучения, то есть положение спектральной линии, и это положение давалось моделью Бора. Но спектральная линия характеризуется еще и яркостью, которая как-то соответствует «охотности» данного перескока. Именно яркостью Эйнштейн занимался в 1916 году, когда ввел два типа излучения — спонтанное и вынужденное. Спонтанный перескок происходит сам собой, независимо ни от чего, и определяется некой величиной вероятности. А вынужденный перескок происходит под воздействием излучения той же частоты и пропорционален его интенсивности. Эйнштейн получил связь между интенсивностями этих излучений, начав фактически путь к теории лазеров, но для нас сейчас — и для создания квантовой теории в 1920-е годы — особенно важно само понятие спонтанного излучения, характеризуемого некой «первичной», фундаментальной вероятностью, а не результатом множества каких-то нано-микро-случайностей.
Такая вероятность стала ключевой особенностью квантовой механики и… неприемлемым понятием для самого Эйнштейна, как и для Планка. Они не верили, что подлинная теория может основываться на понятии вероятности. Почему, сказать трудно. Планковский закон истории науки дает ответ, но применять его к Планку и Эйнштейну, выдвинувшим прорывные квантовые идеи, особенно трудно.
Эйнштейн 20-х годов сильно отличался от Эйнштейна 1916 года. Избрав направлением поиска обобщение своей теории гравитации, он не видел там места для вероятности. А объясняя свою позицию, говорил об идеале причинности, который, по его мнению, должен был воплотиться в «полной» теории. Своему близкому другу он писал в 1926 году:
Квантовая механика внушает большое уважение. Но внутренний голос говорит мне, что все же это НЕ ТО… Эта теория многое дает, но к тайне Создателя она едва ли нас приближает. Во всяком случае, я убежден, что Он не играет в кости.
Такие доводы не убеждали Бора, который всей душой принял вероятностную основу квантовой механики и принял участие в ее осмыслении. Он признавал значение критики Эйнштейна для прояснения фундаментальных особенностей квантовой механики, но считал эти особенности необратимым изменением фундамента физики. А на довод Эйнштейна о Боге, не играющим в азартные игры, отвечал, что «уже мыслители древности указывали на необходимость величайшей осторожности в присвоении Провидению свойств, выраженных на языке повседневной жизни».
Это не только остроумный ответ в тон Эйнштейну, а еще и напоминание о том, что явления классической физики гораздо ближе к повседневной жизни, чем явления атомных масштабов. Соответственно, понятия и научные идеалы квантовой физики могут кардинально отличаться от привычных. Тут стоит вспомнить слова Галилея о Природе, которая «вовсе не заботится о том, доступны ли человеческому восприятию ее скрытые причины и способы действия», и о Боге, который «наделил нас органами чувств, языком и разумом, чтобы с их помощью мы сами могли получить знания об устройстве Природы».
Освоение нового языка требует усилий. В квантовой физике нужно было выработать новый язык для мира квантовых явлений и говорить на нескольких языках сразу. Когда речь шла о зримо-осязаемых рукотворных приборах, нужен был язык классической физики. А говорить о квантовых явлениях, измеряемых этими приборами, нужно было на новом — квантовом — языке. И это было нелегко даже тем, кто этот новый язык изобретал.
Когда некий физик посетовал, что при одной мысли о квантовых проблемах у него кружится голова, Бор ответил: «Если кто-то думает о проблемах квантовой теории без головокружения, значит, он ничего в них не понимает». К трудностям двуязычия, впрочем, добавлялось головокружение от успехов теории.
Главным средством от головокружения было понимание, что квантовая механика — это еще не подлинная теория. Не потому, что она не соответствовала вкусам, или, скажем прямо, предрассудкам Эйнштейна, а потому, что квантовая механика не учитывала одно из главных его достижений — теорию относительности, которой было уже двадцать лет от роду. Создатели квантовой механики принимали теорию относительности как несомненную истину. Еще в модели атома Бора удалось, применив теорию относительности, объяснить тонкости спектра, но квантовая механика делала вид, что никакой теории относительности нет. Физика жила в двух эпохах параллельно — в квантовой и в релятивистской. Квантовая физика развивалась на основе константы Планка h , а релятивистская — на основе скорости света c , которая тоже оказалась фундаментальной константой.