Термостойкая трава
Фантастический случай тройного симбиоза описали в начале 2007 года американские биологи, работающие в Иеллоустонском национальном парке (США), где на горячей почве вблизи геотермальных источников произрастает термостойкая трава Dichanthelium lanuginosum, близкая родственница проса. Ранее было установлено, что удивительная устойчивость этого растения к высоким температурам каким-то образом связана с эндофитным (произрастающим в тканях растения) грибом Curvularia protuberata. Если выращивать растение и гриб по отдельности друг от друга, ни тот ни другой организм не выдерживает длительного нагревания свыше 38 °C, однако вместе они прекрасно растут на почве с температурой 65 °C. Кроме того, даже в отсутствие теплового стресса растение, зараженное грибом, растет быстрее и лучше переносит засухи.
Продолжая исследование этой симбиотической системы, ученые обнаружили, что в ней есть еще и третий обязательный участник — РНК-содержащий вирус, обитающий в клетках гриба.
Сначала ученые, конечно, не подозревали, что вирус важен для данного «сверхорганизма». Они просто решили выяснить, не оказывает ли обнаруженный вирус какого-нибудь влияния на взаимоотношения гриба и растения. Для этого они «вылечили» гриб, подвергнув его мицелий высушиванию и замораживанию при –80 °C. Эта суровая процедура приводит к разрушению вирусных частиц (и счастливы те организмы, которые могут, как грибы, сами ее выдержать и таким образом исцелиться от вирусных болезней!).
Необходимые для экспериментов «безгрибные» растения получали из семян, с которых снимали оболочку, а затем полоскали 10–15 минут в хлорке. Выращенные из таких семян растения затем заражали (или не заражали) симбиотическим грибом, капая на них из пипетки взвесь грибных спор.
Оказалось, что гриб, «вылеченный» от вируса, не в состоянии сделать растение термоустойчивым. Растения с таким грибом погибали на горячей почве точно так же, как и растения без гриба.
Однако нужно было еще убедиться, что дело тут именно в вирусе, а не в каких-то побочных эффектах тех жестоких процедур, которые применялись при «лечении» гриба от вируса и растения — от гриба. Для этого «вылеченные» грибы были снова заражены вирусом, а этими повторно зараженными грибами, в свою очередь, заразили «вылеченные» растения. Теперь все было в порядке: заново собранный симбиотический комплекс отлично рос на горячей почве.
Таким образом, для термоустойчивости оказались необходимы все три компонента симбиотической системы: и растение, и гриб, и вирус.
Напоследок ученые провели совсем уж смелый эксперимент, свидетельствующий о высоком потенциале творческой энергии: взяли да заразили «грибом термоустойчивости» совершенно другое растение, а именно обыкновенный помидор. Были взяты четыре группы молодых томатов, по 19 растений в каждой. Первую группу заразили «дикой» формой гриба, содержащего вирус; вторую — грибом, вылеченным от вируса, а затем снова зараженным; третью — грибом, лишенным вируса; четвертую вообще оставили без грибов. Затем почву, в которой росли эти помидоры, стали каждые сутки нагревать до 65 °C на 10 часов, а остальные 14 часов температура почвы была 26 °C. Спустя 14 дней в первой группе в живых осталось 11 растений, во второй — 10, в третьей — 4, в четвертой — только 2.
Таким образом, гриб, зараженный вирусом, способен повышать термоустойчивость не только у своего природного хозяина — однодольного растения Dichanthelium lanuginosum, но и у неродственных растений, относящихся к классу двудольных. Это открытие может иметь большое практическое значение. Трудность пока в том, что авторам не удалось добиться стопроцентной зараженности всех помидоров симбиотическими грибами. Именно этим, по их мнению, объясняется более высокая смертность подопытных томатов на горячей почве по сравнению с Dichanthelium lanuginosum.