Книга: Кости, скалы и звезды. Наука о том, когда что произошло
Назад: Глава 6 Небесный мандат
Дальше: Глава 8 Утраченные миры

Глава 7
Льды наступают

Неслышная поступь времени.
Эдмунд Берк (1729–1797)
Представьте снежно-ледяную пустыню, торосы, завывание морозного ветра, запредельные минусовые температуры. Картина настолько впечаталась в сознание, что кажется, витала в воздухе тысячелетиями. Однако еще несколько сотен лет назад жители Западной Европы в большинстве своем полагали, что мир существует каких-нибудь 6000 лет. И камни, и почву, и останки ископаемых принес на сушу, по их мнению, Всемирный потоп, описанный в Книге Бытия. Так гласило Писание. Однако сегодня в это мало кто верит всерьез. Что же изменилось? Почему мы так сжились с идеей ледниковых периодов? И дает ли это представление о том, что нас может ждать в будущем?
Не далее как в конце XVIII в. люди начали обращать внимание на свидетельства природных катаклизмов, встречающиеся по всей Европе. Они попадались всюду. Даже высоко в горах обнаруживались нагромождения валунов. Что еще могло лечь в основу «теории катастроф», кроме Всемирного потопа? Однако в 1787 г. швейцарский священнослужитель Бернард Кун осмелился помыслить иначе. Он высказал крамольную мысль, что валуны и обломки скал, отличающиеся по геологическому составу от окружающей местности, мог принести ледник. В валунах, которые в геологии называются «эрратическими», верующие видели прямое доказательство Всемирного потопа. Кун, однако, посчитал их следствием природного процесса.
Примерно в то же время шотландский геолог Джеймс Хаттон, один из основоположников геологии, выдвинул теорию, что сегодня мы наблюдаем геологические процессы, которые могут в дальнейшем (в очень далеком будущем) привести к образованию новых гор. В результате медленной эрозии, полагал он, образуются отложения, заполняющие дно озер и морей. Сегодня мы называем эту теорию «униформизмом» — но Хаттон в выборе слова не виноват, термин придумали уже после его смерти.
В 1795 г. он изложил свою тщательно аргументированную теорию в двухтомном трактате под названием «Теория Земли». Книга обрела известность как высоконаучный, но при этом абсолютно неудобочитаемый труд. Как заметил друг автора Джон Плейфэр, «вероятно, в силу своего большого объема и во многом вытекающей отсюда туманности изложения, труд этот был принят совсем не так, как того заслуживает». Те же, кто сумел одолеть трактат целиком, выяснили, что, по утверждению Хаттона, эрратические валуны появились в горах Юры благодаря леднику. Доводы Хаттона ставили под сомнение теорию катастроф. Современная картина мира, доказывал Хаттон, складывалась в результате естественных постепенных процессов, и для ее объяснения не обязательно искать катастрофы.
Несмотря ни на что, теория не сразу нашла приверженцев. На первых порах идея просто зачахла. И только в начале XIX в. дело сдвинулось с мертвой точки благодаря простому швейцарскому альпинисту Жан-Пьеру Перродену, который всю жизнь прожил в Швейцарских Альпах и периодически натыкался на скальные породы, словно изрезанные долотом. Перроден предположил, что это воздействие ледника, проползшего когда-то по ныне свободной ото льда поверхности. В отличие от Куна ему удалось разжечь достаточный интерес общественности, чтобы теория начала разрабатываться. Проявив большую настойчивость, он сумел уломать двух инженеров представить его концепцию на собраниях Швейцарского естественнонаучного общества в 1829 и 1834 гг. Один из слушателей пришел в такое возмущение после доклада, что решил опровергнуть доводы Перродена раз и навсегда. Звали его Луи Агассис. В свои 25 лет он уже считался восходящей звездой швейцарской науки.
Однако надежды Агассиса не оправдались. К 1836 г. результаты полевых исследований, проведенных в горах, кардинально изменили его точку зрения. Теперь он сам убедился, на что способны были древние ледники. На следующий год он занял влиятельную должность, придавшую его словам особый вес: он стал президентом Швейцарского естественно-научного общества. На ежегодной конференции он должен был выступить с докладом об ископаемых рыбах, будучи признанным авторитетом в данной области. Вместо этого он повел речь о «ледниковых периодах», впервые использовав данный термин на научном собрании. Агассис был настолько увлечен концепцией, что для большей убедительности вывел слушателей в горы. Среди прочего он продемонстрировал им борозды, оставленные на поверхности скал, по его предположениям, камнями, вмерзшими в ползущий по местности ледник. Консервативных ученых мужей это зрелище, впрочем, не убедило. Как знать, возражали они, с таким же успехом эти борозды могла оставить груженая повозка.
Однако неудача Агассиса не обескуражила, и в 1840 г. он написал книгу о ледниковом периоде, где выжал из данных всё. Там он доказывал, что жизнь с лица земли стерло стремительное массовое наступление ледников — «Большой ледниковый период». В том же году он выступил в Британии с докладами по теме, радостно рассказывая о мамонтах, которые замерзали в момент гибели. Несмотря на свои крайние взгляды и обвинения в приверженности катастрофизму, ему вскоре удалось привлечь на свою сторону самых выдающихся в то время британских геологов, в том числе Уильяма Бакленда и Чарльза Лайеля, о которых мы еще поговорим (см. главу 10). Автор популярного труда «Основы геологии» Чарльз Лайель принадлежал к ярым сторонникам униформистской теории Хаттона и сначала никак не желал прислушиваться к катастрофистским доводам Агассиса о ледниковом периоде. Однако Бакленду, учителю и наставнику Лайеля, удалось его переубедить. В конце 1840 г. все трое уже выступали единым фронтом. Агассис прочитал доклад на собрании Лондонского геологического общества, где в его поддержку также вышли с докладами Бакленд и Лайель. Ледниковый период вступил в свои права.
* * *
Приняв наконец теорию ледниковых периодов, ученые середины XIX в. задались вопросом: что же вызвало наступление ледников?
Прежде чем мы к этому перейдем, освежим в памяти основные принципы обращения Земли вокруг Солнца, которых мы вкратце касались в главе о пирамидах (см. главу 4). Начнем с того, что происходит в течение годового цикла, а потом обратимся к изменениям в масштабе тысячелетий.
Если вы когда-нибудь покупали глобус, наверняка обращали внимание, что ось, на которую он насажен, расположена не вертикально, а под углом. Из всех различных факторов обращения Земли вокруг Солнца именно наклону оси вращения планеты относительно орбитальной плоскости мы обязаны сменой времен года. И эта особенность земной орбиты была открыта первой: александрийским астрономом Эратосфеном, жившим между 276 и 194 гг. до н.э. В данный момент отклонение оси от вертикали составляет 23,5°. Результат можно наблюдать в северном полушарии во время летнего солнцестояния в районе 21 июня: северная часть планеты обращена строго к Солнцу и получает максимальное количество тепла (рис. 7.1). Через полгода наблюдается прямо противоположная картина. 21 декабря, во время зимнего солнцестояния северное полушарие максимально отклонено от Солнца, и из-за этого на Землю попадает минимум тепла.

 

Рис. 7.1. Факторы, действующие на обращение Земли вокруг Солнца
Важно помнить, что на смену времен года влияет не расстояние до Солнца, а то, куда обращена планета. В настоящее время лето в северном полушарии наступает как раз, когда Земля находится в наибольшем орбитальном удалении от Солнца.
В 1605 г. немецкий астроном Иоганн Кеплер выяснил, как происходит движение Земли вокруг Солнца. Он определил, что планеты, в том числе и Земля, описывают вокруг Солнца не идеальную окружность, как предполагалось в то время, а следуют по вытянутой, эллиптической орбите. До этого люди долго терялись в догадках, почему в одном полугодии дни получаются несколько длиннее, чем в другом. Кеплер же установил, что воображаемая линия, связывающая планету с Солнцем, проходит участок космического пространства за фиксированное время. При этом Солнце слегка смещено от центра описываемой фигуры, поэтому в одном полугодии мы находимся ближе к нашей звезде и под более широким углом и, следовательно движемся быстрее. В европейском календаре это явление никак не отражено, а вот в некоторых районах Индии астрономы, также заметив разницу, сумели создать календарь с месяцами разной длины. Те, что приходятся на время, когда Земля ближе всего к Солнцу, получились короче, и наоборот, чем дальше Земля от Солнца, тем больше дней в месяце.
Довольно рано исследователи поняли, что ключ к тайне ледниковых периодов надо искать как раз в движении Земли по околосолнечной орбите. В 1842 г. первую попытку предпринял французский математик Жозеф Адемар в своей книге «Возмущение моря». Адемар предположил, что в прошлом Земля успела пережить не один ледниковый период, которыми она обязана форме своей орбиты и прецессии равноденствий (см. определение возраста пирамид в главе 4). Из-за формы земной орбиты и некоторого смещения Солнца от центра северному полушарию сейчас достается чуть больше летних дней, чем зимних. В результате, согласно выводам Адемара, в Антарктиде увеличивается число темных зимних ночей, и, получая с каждым годом меньше тепла, она постепенно охлаждается.
За наступление ледникового периода, по мнению Адемара, прежде всего отвечает прецессия равноденствий. Как мы уже говорили выше, в ходе этого процесса меняется ориентация планеты, которая влияет на соотношение времен года при обращении Земли вокруг Солнца в течение цикла в 26 000 лет. Адемар знал, что в настоящее время северное полушарие в летние месяцы наиболее удалено от Солнца, однако через 13 000 лет картина сменится на прямо противоположную. Он утверждал, что в результате этих процессов ледниковый период должен наступать в том полушарии, которое в зимний период наиболее удалено от Солнца. Ледниковые периоды возникают в разных полушариях в разное время.
Предположение было смелым, однако абсолютно ошибочным. К 1852 г. стало известно, что на количество тепла, получаемого от Солнца в течение года, — солнечное излучение или инсоляцию — прецессия никак не влияет. Оба полушария получают за год абсолютно одинаковое количество солнечного тепла. Значит, ледниковый период не мог быть вызван прецессией. Но в одном Адемар оказался прав. В 1860-1870-х гг. геологи начали находить фрагменты растений между остаточными ледниковыми рельефами в Шотландии и Северной Америке, доказывающие, что Великий ледниковый период был не один. Адемар посеял зерно истины. Однако как докопаться до остального?
Эстафету подхватил британский ученый Джеймс Кролл. Это был удивительный человек. Он сменил несколько профессий: работал колесным мастером, продавцом чая, гостиничным управляющим, пока не устроился в 1859 г. в возрасте 38 лет вахтером в Андерсоновский колледж и музей в Глазго. Ему отчаянно требовался доступ в институтскую библиотеку. В 1864 г. вахтер выпустил свою первую монографию на тему многократных ледниковых периодов. Он утверждал, что основной причиной их наступления стало изменение формы земной орбиты (ее «эксцентричность») с эллиптической до почти круговой и снова на эллиптическую в течение 100 000 лет. Однако, в отличие от Адемара, Кролла не интересовало количество получаемого Землей за год тепла.
Для Кролла значение имело другое: как тепло распределяется в течение года. Из-за обращения вокруг Солнца по вытянутой эллиптической орбите Земля в одно время года получает больше тепла, чем в другое. В наиболее удаленной от Солнца точке орбиты зима на Земле получается крайне лютой. Кролл утверждал, что для образования массивного снежного покрова требуется несколько холодных зим подряд при движении по сильно вытянутой эллиптической орбите. Растущие снеговые шапки, обладающие отражающими свойствами (альбедо), будут отражать все больше и без того скудные солнечные лучи. Поэтому станет еще холоднее. Прецессия могла влиять на процесс лишь в то время, когда эксцентричность орбиты была достаточно высока. Когда это происходило (и в этом Кролл поддерживает Адемара), ледниковые периоды накрывали разные полушария в разное время.
Поскольку в то время орбита считалась более приближенной по форме к окружности, Кролл утверждал, что с влиянием прецессии можно не считаться. Орбита была недостаточно эллиптической, чтобы на планете нарос достаточный слой льда для наступления ледникового периода.
Однако Кролл на этом не остановился. В 1875 г. он ввел в уравнение третью и последнюю астрономическую характеристику вращения Земли — изменение угла наклона планеты, или «нутацию». К концу XIX в. уже стало известно, что ось наклона может «качаться» вперед-назад от 21,5° до 24,5°. Кролл предположил, что при большем угле наклона ледниковый период менее вероятен, поскольку полюса в течение года будут получать больше тепла. Совокупность этих факторов подсказывала Кроллу, что со времени последнего ледникового периода на Земле должно было пройти по меньшей мере 80 000 лет. С тех пор на планете наблюдалось относительное потепление, так называемый межледниковый период. Теперь требовалось независимым путем установить время последнего ледникового периода. Не забывайте, дело происходило задолго до появления радиоуглеродного метода, который начали применять лишь в середине XX в. А пока исследователи опирались на показатели интенсивности отложения наносов и эрозии, вычисляя, сколько лет ушло на образование озерных дельт и водопадов с момента таяния льдов. Результаты получались самые приблизительные, с невероятными погрешностями, однако в общем и целом они сходились где-то между 10 000 и 20 000 лет назад. Можно ли верить таким результатам? Если да, то они наносят сокрушительный удар орбитальной теории.
В конце XIX в. было обнаружено, что во многих озерах, питаемых ледниковыми водами, образуется строго определенная картина донных отложений. Ледники редко состоят из чистого льда. Обычно они содержат большое количество минеральных вкраплений разного размера, которые попадают в тело ледника из перепаханного им рельефа. Весной и летом часть льдов тает, и вода с каменным крошевом стремится в прилегающие озера. Тяжелые частицы песка первыми оседают слоем на озерном дне. Затем, до следующей весны, по мере того как таяние убывает, на этот нижний, более грубый слой оседает более легкая и мелкая взвесь.
В это время шведский ученый Герард де Геер обнаружил слои такого рода в древних озерных отложениях на территориях, которые когда-то были покрыты ледниками. Он пришел к выводу, что регулярные отложения грубого и мелкого песка, как и годичные кольца у деревьев, отображают отдельные годы. Де Геер ввел термин «варва» (годичный слой отложений) и выдвинул мысль, что по этим слоям можно вычислить, сколько лет ледник питает озеро. Поскольку варвы зависят от количества растаявшего льда, толщина слоев меняется от года к году, от миллиметра до нескольких сантиметров. В соседних, сообщающихся озерах должна наблюдаться сходная картина отложений, поскольку питающие их ледники подвергались одним и тем же климатическим воздействиям. А значит, как и в дендрохронологии, можно создавать сравнительные и перекрестные шкалы.
С 1878 г. де Геер выводил на полевые исследования в шведские долины целые армии студентов, которые должны были сравнивать варвы озер, образовавшихся в местах отступления ледников в конце последнего ледникового периода. С тех пор озера успели высохнуть, и, к счастью для де Геера, их дно теперь прорезано ручьями и потоками, которые обнажили донные отложения. К 1910 г. ученый мог с уверенностью утверждать, что когда-то вся Скандинавия была покрыта огромной ледяной шапкой. Тут-то и вскрылась ошибочность датировки. Отступление ледников началось примерно 10 000 лет назад, а не 80 000, как предполагал Кролл, — в этом и состоял основной промах орбитальной теории.
Решить загадку оказалось под силу одному человеку — сербу по имени Милутин Миланкович, который большую часть Первой мировой войны провел за переосмыслением идей Кролла. В 1920 г. Миланкович вычислил совокупное воздействие эксцентричности, то есть изменения формы орбиты (в рамках 100 000 лет), нутации (за 41 000 лет) и прецессии равноденствий (за 26 000 лет) на количество солнечного тепла, полученного разными земными широтами за последний миллион лет. Миланкович считал, что ключ к разгадке надо искать в высоких широтах, в частности на 65° северной широты: именно там сильнее всего менялось количество получаемого солнечного тепла.
Самое же главное открытие, позволившее Миланковичу сделать шаг вперед, состояло в следующем: он сообразил, что сохранению снежного покрова до следующей зимы способствовали низкие летние температуры. Только при значительном устойчивом снижении максимальных температур лед мог не таять и накапливаться. В этом Миланкович противоречил Адемару и Кроллу, утверждавшим, что начало ледникового периода обуславливают морозные зимы. Результат получился ошеломляющим. Вопреки прогнозам предшественников, считавших, что ледниковый период закончился 80 000 лет назад, Миланкович датировал отступление ледников 10 000 лет назад, в полном соответствии с данными, полученными де Геером и другими.
Таким образом подтвердился возраст последнего ледникового периода, но как быть с остальными? Если ледники наступали не единожды, может ли орбитальная теория помочь в их датировке? Загвоздка состояла в том, что результаты расчетов никоим образом нельзя было перепроверить по земному рельефу. Последний ледник уничтожил почти весь рельеф, созданный своими предшественниками. Лишь кое-где остались крошечные следы их деятельности. Науке же требовалась непрерывная, уходящая в прошлое шкала, показывающая результаты работы ледников.
Ответ нашелся совсем не там, где его искали.
* * *
Давайте вкратце подведем итог того, что мы узнали. В конце XVII в. люди начали обращать внимание на странные, рифленые скальные поверхности в гористых районах Европы, а также камни, многие из которых отличались по геологическим характеристикам от окружающего ландшафта. В те времена большинство людей не сомневалось в их связи со Всемирным потопом, описанным в Книге Бытия. К 1840 г. Агассис пришел к выводу, что на самом деле это последствия Великого ледникового периода. В дальнейшем, с 1860 по 1910 г. первоначальная теория Агассиса была опровергнута, однако массовое наступление ледников в прошлом подтвердилось, и самый поздний из ледниковых периодов, как выяснилось, закончился 10 000 лет назад. Причины их возникновения тогда оставались неизвестными, однако к 1920-м гг. Миланкович доказал, что с большой долей вероятности ответ надо искать в том, как меняется обращение Земли вокруг Солнца на гигантских многотысячелетних промежутках времени. Но как определить время наступления более ранних ледниковых периодов, по-прежнему не знал никто.
До сих пор вся бурная исследовательская деятельность велась на суше. Океаном никто не интересовался. Лишь в начале 1930-х гг. научились, выходя на научно-исследовательских судах, бурить океанское дно длинными металлическими трубками и, взяв пробы грунта, исследовать отложения. Бытовало мнение, что океанская среда в последнее время оставалась практически неизменной.
С этим мнением пришлось расстаться в 1955 г., когда итальянцу Чезаре Эмилиани пришло в голову взглянуть на раковины фораминифер, сохранившихся в течении сотен тысяч лет в пробах грунта с океанского дна. Эти крохотные создания обитают в океанской толще на разной глубине, и после смерти их раковины погружаются в донный ил. Эмилиани предположил, что по стабильным изотопам, сохранившимся в фораминиферах, можно попытаться определить, каким был климат в прошлом.
Изотопы, как мы помним, это атомы с одинаковым содержанием протонов, отличающиеся по количеству нейтронов. Несмотря на то, что до сих пор мы в основном рассматривали радиоактивные формы, стабильных изотопов на самом деле большинство. Поэтому, как только изотоп усваивается организмом, соотношение одного стабильного изотопа к другому остается неизменным. Сколько бы времени ни прошло, показатели стабильных изотопов должны остаться прежними.
Эмилиани пытался реконструировать древние температуры по двум стабильным изотопам кислорода — 16O и 18O. Для наглядности представьте себе их в виде двух шаров разного веса. 18O будет чуть тяжелее — на два нейтрона, однако в химических реакциях оба будут вести себя абсолютно одинаково.
Прелесть использования фораминифер в том, что они получают кислород непосредственно из океанской воды и он идет на строительство их раковин из карбоната кальция. Исследования современных фораминифер показали, что, как только температура воды понижается, они начинают усваивать больше изотопов тяжелого кислорода — так называемая «положительная» тенденция. По мере потепления, наоборот, усваивается больше легкого кислорода, и фораминиферы становятся «отрицательными». Рассмотрев соотношение различных форм кислорода в раковинах фораминифер из донных проб, Эмилиани пришел в изумление: за последние 300 000 лет наблюдалась явная смена холодного и теплого климата. Форма температурной кривой совпадала с прогнозами, сделанными на основе орбитальной теории. Выходит, Миланкович был прав?
Но не все так просто. Действительно ли изотопы в фораминиферах отмечают температурные изменения? Исследования современных фораминифер это подтверждают, однако как обстояло дело во время древних ледниковых периодов? Не изменились ли с тех времен правила игры?
Ледниковый период отличается не только похолоданием, но и уменьшением испарения с поверхности океана. Чем дальше, тем больше тяжелых молекул воды остается в океане, поскольку молекулам, состоящим из легкого кислорода, испаряться в таких условиях легче. В высоких широтах эта испарившаяся влага конденсируется и выпадает в виде снега, формируя пространный ледяной покров. Другими словами, из океана извлекается преимущественно 16O, который затем запирается в ледяной корке, а в океанской воде повышается содержание 18O. Однако в межледниковый период все происходит с точностью до наоборот. В результате потепления с влагой испаряется больше тяжелого кислорода, а лед тем временем тает, возвращая обратно в океан скованный 16O. В результате содержание 18O в океанской воде падает. Таким образом, показатели содержания изотопов кислорода в фораминиферах за протяженные временные периоды можно мерить по объемам льда.
В 1960-х американец Джон Имбри и британец Ник Шеклтон выступили с предположением, что пробы, взятые очень близко к полюсам, будут отражать одновременно и температурные изменения, и изменения объема льда. Однако, как ни странно, самую достоверную картину давно растаявших льдов, по их словам, надо искать вовсе не там, а в океанских отложениях тропических широт. Океан — это огромный конвейер, перемещающий теплые поверхностные слои воды в Северную Атлантику (теплое течение Гольфстрим) и возвращающий их холодными, более плотными глубинными течениями. Со временем, через несколько столетий, эти глубинные слои поднимаются на поверхность в процессе апвеллинга, который завершает весь цикл. Благодаря этим процессам океанские воды отлично перемешиваются. Когда лед на полюсах тает, перемены в содержании изотопа кислорода быстро распространяются на весь мировой океан и воспринимаются фораминиферами, строящими свои раковины. А поскольку температура в тропиках за прошедшее время менялась гораздо меньше, тропические фораминиферы покажут, фактически, только изменения объема льдов.
Впрочем, выводы о температурных изменениях, полученные Эмилиани на основе кривой содержания изотопов кислорода, — это еще не все. Проблема в том, что океанские донные отложения накапливаются в большинстве своем слишком медленно, чтобы проверить по ним расчеты орбитальной теории на циклы в 100 000, 41 000 и 26 000 лет.
Рис. 7.2. Изменение объемов льда и солнечного излучения за последние 600 000 лет
В середине 1970-х все внимание ученых было приковано к двум пробам донного грунта из Индийского океана. Судя по изменениям в магнитном поле Земли и радиоуглеродному анализу фораминифер из проб, в этих местах оказалась необычайно высокая скорость отложения наносов. Следовательно, эти пробы можно было анализировать по более узким временным интервалам, чем остальные. Значит ли это, что нашлась возможность проверить орбитальную теорию? Извлеченные фораминиферы подвергли анализу на изотопы кислорода. Научное сообщество замерло в ожидании. Полученные в результате анализа изменения объемов льда полностью совпали с прогнозами орбитальной теории (см. рис. 7.2), подтвердив циклы эксцентричности, нутации и прецессии. Наконец было напрямую доказано, что ледниковые периоды обусловлены изменениями в обращении Земли вокруг Солнца. Адемар, Кролл и Миланкович оказались в конечном итоге правы.
* * *
Чтобы представить себе, какие климатические перемены ждут нас в будущем, нужно иметь возможность изучать стремительные изменения, случавшиеся в прошлом. К сожалению, в отношении океана редко удается найти свидетельства быстрых климатических изменений, а когда таковые есть, сложно добиться точной датировки. Поэтому исследователи принялись прочесывать остальные части света в поисках мест, для которых есть детальные свидетельства климатических изменений. И вскоре их взоры обратились к полярным шапкам.
На полюсах ежегодно выпадающий снег сохраняется в виде ледяных слоев, накапливавшихся многие тысячи лет. Глубоко в этой толще тысячелетиями таятся самые разнообразные признаки климатических и природных изменений: пыль, кислотность, вулканический пепел, парниковые газы и изотопы. В Антарктиде удалось восстановить картину климатических изменений, охватывающую период 800 000 лет. В ней отчетливо различаются циклы 100 000 лет, спрогнозированные орбитальной теорией. В Гренландии ледяная летопись позволяет углубиться в прошлое лишь на 123 000 лет, однако каждый ее год можно рассмотреть отдельно. В результате получается изумительно подробная реконструкция климатической картины данного региона, которую океан предоставить вряд ли смог бы.
Картина, впрочем, получается пугающая: гренландские льды показывают обширные и частые температурные сдвиги в период от 90 000 до 11 550 лет назад. Так называемые осцилляции Дансгора-Эшгера (см. рис. 7.3) — это резкие температурные колебания, по амплитуде схожие с переходом от ледникового периода к межледниковому, но в куда более сжатые сроки — несколько лет. Ничего подобного орбитальная теория, учитывающая изменения в обращении Земли вокруг Солнца, не предвидела и не описывала. В чем же дело?
Рис. 7.3. Температурные изменения в Гренландии за последние 90 000 лет
Примечание: Периодизация вымирания мегафауны рассматривается в следующей главе.
Ключ к разгадке надо искать в ледовых слоях на глубине 8200 лет назад. Взятый оттуда 200-летний срез отражает таяние уходящих североамериканских ледников — крохотного охвостка последнего ледникового периода. Вся образовавшаяся в результате пресная вода устремилась в Северную Атлантику, легла слоем на поверхности океана и успешно предотвратила формирование холодной и более плотной морской воды. Как мы помним, образование глубинных более плотных и холодных слоев — часть общего океанского круговорота. И вот 8200 лет назад он почти замер от этого неожиданного, чуть не ставшего смертельным притока. Было нарушено течение Гольфстрима, несущего теплые воды на север, и в высоких широтах наступило резкое похолодание. Вот так и случился мини-ледниковый период в северной части планеты.
Если именно этим обусловлены осцилляции Дансгора-Эшгера, похоже, резкие перепады от холода к теплу и наоборот испытывают Землю на прочность куда чаще, чем мы думаем. Экстремальное воплощение эта идея получила в голливудском фильме 2004 г. «Послезавтра». Несмотря на фантастичность сюжета, если океан действительно острее реагирует на изменения, чем мы думали, таяние полярных льдов и вправду может почти мгновенно остановить тот самый круговорот-конвейер в Северной Атлантике, приведя к катастрофическим последствиям не только для северных широт, но, вероятно, и для всей планеты.
Назад: Глава 6 Небесный мандат
Дальше: Глава 8 Утраченные миры