4. Свидетели перемен
Гены, естественный отбор и эволюция в действии
Загадка наследственности — как два человека могут произвести на свет дитя, обладающее качествами обоих родителей, — в начале XIX в. породила множество самых диких идей и предположений. Одной из нелепейших, по крайней мере с современной точки зрения, была так называемая гипотеза пангенеза. В ней предполагалось, что наследственность передается посредством мельчайших частиц, которые отщепляются от всех клеток тела. Эти частицы (получившие название геммулы), подобно триллионам мигрирующих лососей, устремляются к половым органам, где и концентрируются в сперме или яйце. Когда яйцо оплодотворяется спермой, геммулы обоих родителей смешиваются. Поскольку каждая частица происходит от конкретной клетки в конкретной части тела одного из родителей, все вместе они формируют нового человека с признаками обоих родителей.
Гипотеза пангенеза оказалась неверной, но предложивший ее ученый не канул в безвестность и не угодил в списки чокнутых. Его репутация устояла благодаря нескольким другим идеям, которые успешно выдержали испытание временем. Автором теории пангенеза был Чарльз Дарвин.
Наследственность наряду с возрастом Земли была одним из величайших разочарований Дарвина. К концу XIX в. «Происхождение видов» убедило большинство ученых в том, что эволюция реальна, но многие продолжали скептически относиться к предложенному Дарвиным механизму изменений — а именно, к естественному отбору. Многие вместо этого обратились к давним идеям Ламарка. Может быть, существует встроенный механизм управления эволюцией, утверждали они, или, может быть, взрослые особи могут приобретать за время жизни определенные качества и передавать их потомству. Если бы Дарвин мог показать, что законы наследственности запрещают такую передачу, но разрешают естественный отбор, он легко одержал бы верх над критиками. Но эти знания не были доступны ни Дарвину, ни другим ученым тех дней.
Уже после смерти Дарвина ученые начали постепенно разбираться в том, как работает наследственность. Только тогда стало ясно, что неоламаркисты ошибаются. Только тогда стало ясно, что законы наследственности делают естественный отбор не только возможным, но и неизбежным, и как при этом возникают новые виды. Для того чтобы это выяснить, потребовался многолетний труд не только генетиков, но также зоологов и палеонтологов. К середине XX в. их совместные усилия сложились в так называемую «синтетическую теорию эволюции». Молодые ученые основывали на синтетической теории эволюции свои новые исследования. Они начали понимать, как проходит эволюция на молекулярном уровне. В результате естественный отбор сегодня уже не та ускользающая невидимая сила, какой ее считал Дарвин. На самом деле сегодня можно наблюдать и действие естественного отбора в дикой природе, и разделение видов. Для этого ученым даже не надо следить за животными, растениями или микробами: можно видеть, как естественный отбор работает внутри нашего тела и даже среди искусственных форм жизни в компьютере.
Монах и наследственность
Если бы история обернулась иначе, ученые могли раскрыть тайны наследственности еще при жизни Дарвина. Еще не была закончена работа над «Происхождением видов», а один моравский монах уже открывал в собственном саду фундаментальные законы генетики.
Грегор Мендель родился в 1822 г. на территории сегодняшней Чехии в семье небогатого фермера и вырос в крошечном домике, состоявшем всего из двух комнат. Заметив способности мальчика, учителя устроили его послушником в монастырь в Брюнне в тогдашней Моравии (в настоящее время Брно). В этом монастыре было много монахов, преданных науке не меньше, чем молитве; там глубоко изучали геологию, метеорологию и физику. Мендель узнал от других монахов о последних достижениях ботаники — к примеру, о новых методах искусственного оплодотворения, позволявших выводить все более качественные сорта. Через некоторое время Менделя направили в Венский университет, где он продолжил изучение биологии. Помимо этого, он изучал физику и математику, и можно сказать, что именно эти науки сформировали Менделя как ученого. Физики научили его проверять гипотезы при помощи экспериментов — тогдашние биологи этим практически не занимались. Математики научили Менделя пользоваться статистикой и находить порядок, скрытый в случайном вроде бы наборе данных.
В 1853 г. Мендель вернулся в Брюнн. Ему было уже за тридцать, он был широкоплеч и немного склонен к полноте, имел высокий лоб, а его живые голубые глаза скрывались за стеклами очков в золотой оправе. Он работал школьным учителем, преподавал естественную историю и физику ученикам второй и третьей ступени. У него было 100 учеников и шесть рабочих дней в неделю, но при этом Мендель умудрялся вести жизнь настоящего ученого, регулярно наблюдал за погодой и следил за научными журналами. Именно в это время он решил поставить эксперимент, чтобы больше узнать о наследственности растений.
Некоторые из венских профессоров Менделя упорно пытались понять, что придает биологическим видам уникальность, почему каждый вид производит на свет подобное себе потомство. Эти вопросы сошлись вместе в тайне гибридов. Селекционеры знали, как развить определенные качества цветка или плода, как получить нужный сорт, и умели скрещивать виды для получения гибридов. Многие гибриды оказывались стерильными, а среди тех, кто мог производить потомство, новые поколения часто возвращались к формам предков. Но если растения могут каким-то образом производить гибриды, это может означать, что виды не вечны и могут меняться. В XVIII в. шведский биолог Карл Линней рассуждал о том, что виды растений одного рода произошли когда-то от общего предка путем гибридизации.
На протяжении почти всего XIX в. ученые считали, что наследственность работает через смешение родительских качеств в потомках. Но Мендель предложил совершенно иной вариант: родители могут передавать потомству свои качества, но качества эти не смешиваются. Для проверки этой идеи Мендель разработал эксперимент, в котором предполагалось скрещивать разновидности растений и отслеживать цвет, размер и форму полученных новых поколений. Для своего эксперимента Мендель выбрал горох и в течение двух лет испытывал всевозможные его сорта и их потомство. В конце концов он остановился на 22 сортах и семи различных признаков, которые предполагалось отслеживать. Горошины в отобранных им сортах могли быть гладкими или сморщенными, зелеными или желтыми. Стручки также могли быть зелеными или желтыми, гладкими или ребристыми. Сами растения могли быть высоко- или низкорослыми, цвести на кончиках или в середине побегов. Мендель собирался фиксировать все эти признаки в каждом новом поколении.
Осторожно помещая пыльцу одного сорта на цветок другого, Мендель скрестил два сорта (с гладкими и сморщенными горошинами) и получил тысячи гибридных семян. Затем он высадил эти семена в монастырском саду и дождался цветения. Получив урожай и вышелушив стручки, он увидел, что все гибридные горошины получились гладкими. Признак сморщенности не наблюдался вообще. После этого Мендель скрестил полученные семена между собой и вырастил второе поколение. Здесь некоторые горошины вновь оказались сморщенными (и морщинки на горошинах были не менее глубокими, чем у их сморщенных предков). Получалось, что признак сморщенности не отсутствовал в гладком поколении; он как бы спрятался в гибридах и позже вновь проявился.
Число сморщенных горошин на каждом кусте было разным, но, проверив большое количество растений, Мендель получил следующее соотношение: одна сморщенная горошина на три гладких. Он проследил судьбу других признаков при скрещивании и получил тот же общий результат: одна зеленая горошина на три желтых, одна белая оболочка семени на три серых, один белый цветок на три фиолетовых.
Мендель понял, что обнаружил закономерность в запутанной проблеме наследственности, но ботаники того времени не обратили на его работу практически никакого внимания. Он умер в монастыре в 1884 г., так и не получив признания в ученом мире; коллеги считали, что Мендель растратил себя на пустяки. На самом же деле этот монах был настоящим первопроходцем в генетике — науке, которая возникла лишь через 16 лет после его смерти. Сегодня, после ста с лишним лет исследований, мы понимаем, почему горох у Менделя рос именно так.
Горох, как и любой другой организм на Земле, несет в каждой из своих клеток сборник молекулярных рецептов по строительству собственного тела. Молекулы — носители этой информации представляют собой дезоксирибонуклеиновую кислоту, более известную как ДНК. По форме они напоминают скрученную в спираль лесенку; информация заключена в «перекладинах» лестницы, каждая из которых состоит из пары химических структур, известных как азотистые основания. Именно основания служат буквами в рецептах жизни, но в отличие, к примеру, от 26 букв английского алфавита код ДНК записан всего четырьмя: это аденин, цитозин, гуанин и тимин.
Каждый ген — участок ДНК, обычно охватывающий несколько тысяч пар оснований, — представляет собой рецепт изготовления какого-нибудь белка. Для выработки этого белка наши клетки создают одноцепочечную копию гена (известную как РНК) и доставляют ее в нужное место. Белки, или протеины, — это длинные молекулярные цепочки, как ДНК и РНК, но состоят они не из оснований, а из соединений другой группы — аминокислот. Опираясь на информацию, заключенную в основаниях РНК, наши клетки подбирают нужные аминокислоты и соединяют их в цепочку; если кусок РНК пройден до конца, новый белок готов. Взаимное притяжение атомов свежесозданного белка заставляет его молекулу свернуться; этот процесс немного напоминает самопроизвольное складывание оригами. Белки могут принимать тысячи разных форм, и роли их не менее многообразны — они могут служить проводниками в клеточных мембранах, придавать жесткость ногтям или разносить кислород от легких по кровеносной системе.
Отношение 3:1, которое Мендель обнаружил при скрещивании гороха, объясняется особым механизмом, при помощи которого рецепты, заключенные в ДНК, передаются от одного поколения к другому. У растений и животных генные рецепты организованы в несколько томов, называемых хромосомами. К примеру, у нас, людей, 25 000 генов, объединенных в 23 пары хромосом. Хромосомы в паре могут иметь одинаковые версии каждого конкретного гена, а могут и разные. При делении обычной клетки каждая из двух дочерних клеток получает полный набор хромосом и, соответственно, генов. Но когда образуются половые клетки — сперматозоиды или яйцеклетки, — то каждая из них получает по одной хромосоме из каждой пары. Какую из двух половинок она получит — дело случая. Когда сперматозоид оплодотворяет яйцо, два набора хромосом сливаются в новые пары, образуя генетический код будущего организма.
Цвет растений гороха у Менделя, их текстура и остальные признаки, которые он регистрировал, контролировались различными генами. Представьте, что один из генов, которые наследовали его растения, существовал в двух различных вариантах; один из них делал горошины гладкими, другой — сморщенными. Сортовой горох с гладкими горошинами имел две одинаковые копии «гладкого» гена; сортовой горох со сморщенными горошинами — две копии гена, дающего сморщенность. Когда Мендель скрещивал два эти сорта, он получал гибриды, у каждого из которых было по одной копии гена «гладкости» и по одной — «сморщенности»; при этом все горошины у такого растения получались гладкими. Генетики до сих пор не до конца понимают почему, но гены, подобные гену «гладкости» гороха, способны доминировать над своими партнерами.
Но ген «сморщенности» в гибридах, хотя и молчит, никуда не исчез. Каждая из половых клеток — и женских, и мужских — такого гибрида получает лишь одну форму этого гена, так что их непосредственные отпрыски могут унаследовать один из родительских вариантов гена с вероятностью 50:50. Это соотношение приводит к тому, что четверть получит два гена сморщенности, четверть — два гена гладкости, а половина — по одной копии каждого типа. Поскольку новые гибриды (те растения, которым досталось по одной копии того и другого гена) опять дадут гладкие горошины, новом поколении отношение гладких горошин к сморщенным составит 3:1.
Наследование большинства признаков гораздо сложнее, чем то, что видел Мендель при скрещивании гороха. Очень часто вид может иметь не два варианта одного гена, а гораздо больше. И редко случается, чтобы за какой-то признак отвечал один-единственный ген. В большинстве случаев бывает задействовано множество разных генов. Род человеческий не делится на тех, кто несет в себе «ген высокого роста» и достигает двух метров роста, и тех, кто из-за «гена маленького роста» вырастает только до полутора метров. В формировании роста человека участвуют многие гены, так что замена одного из них даст совсем небольшую разницу. Если наша ДНК — это поваренная книга, то наше тело — это «шведский стол». Если использовать при выпечке хлеба соль вместо дрожжей, разница получится очень заметной, но если в соус чили по ошибке попадет тимьян вместо душицы, никто даже не заметит.
Переписывая поваренную книгу жизни
Разновидности, которые Дарвин наблюдал у своих голубей и усоногих рачков — и которые никак не мог объяснить, — возникают при изменении структуры ДНК. Вообще-то клетки способны воспроизводить ДНК почти безошибочно, но время от времени в процесс все же вкрадываются нарушения. Корректирующие белки находят и исправляют большую часть ошибок, но некоторые остаются. В основном такие редкие отклонения, известные как мутации, меняют всего лишь единственную букву в коде ДНК, но иногда они могут оказаться куда более радикальными. Бывает, что отдельные участки ДНК самопроизвольно «вырезают» себя из одного места и снова вставляются в другое, изменяя тем самым ген, в котором находят себе новый дом. Иногда при копировании ДНК во время деления клетки целый ген, а то и группа генов, случайно дублируется.
Еще в 1920-х гг. ученые начали осознавать, что мутации играют громадную роль в процессе эволюции и возникновении новых видов. Исследователи — в их числе британский математик Рональд Фишер и американский биолог Сьюэлл Райт — объединили естественный отбор и генетику, обеспечив Дарвиновой теории куда более прочное основание.
Когда ДНК мутирует, клетка, в которой это происходит, может просто потерять жизнеспособность и погибнуть, а может начать бешено размножаться и образовать опухоль. В любом из этих случаев со смертью организма-носителя мутация исчезнет. Но если мутация изменяет ДНК яйцеклетки или сперматозоида, она получает шанс на бессмертие. Она может попасть в гены детенышей, потом детенышей детенышей и т. д. От результата этой мутации — благоприятного, неблагоприятного или нейтрального — будет зависеть то, насколько часто она будет встречаться у будущих поколений. Мутации часто причиняют вред и даже убивают своего носителя раньше, чем он успеет родиться, — или сказываются на его способности к размножению. Если мутация заметно снижает шансы особи на репродуктивный успех, она постепенно исчезнет.
Но иногда вместо вреда мутация приносит некоторую пользу. Она может изменить структуру белков, сделав их более эффективными в переваривании пищи или разложении ядовитых веществ. Если действие мутации позволяет организму произвести на свет в среднем больше отпрысков, чем организмам, у которых ее не было, то постепенно она получит большое распространение в популяции. (Биологи сказали бы, что этот мутант более приспособлен, чем остальные.) Если потомство мутанта преуспевает, мутация, носителями которой они являются, получает большее распространение; иногда мутация оказывается настолько успешной, что прежняя версия гена просто исчезает. Естественный отбор, как показали Фишер и Райт, в значительной мере заключается в различной судьбе разных форм генов.
Особенно важным стал вывод Фишера о том, что естественный отбор действует через накопление множества мелких мутаций, а не через отдельные гигантские мутации. Фишер доказывал свой вывод при помощи хитроумной математики, но прояснить этот вопрос можно и на простом гипотетическом примере. Рассмотрим стрекозиные крылья. Они не должны быть слишком короткими — в этом случае стрекоза не сможет развить достаточную подъемную силу, чтобы оставаться в воздухе, — но не должны быть и слишком длинными — иначе ими будет слишком тяжело махать. Где-то между слишком малой и слишком большой длиной находится оптимальная длина крыльев, которая делает стрекозу максимально приспособленной. Если построить график зависимости приспособленности от длины крыла, мы получим график в виде пологого холма с максимумом на уровне оптимальной длины крыла. Если бы мы на самом деле переловили множество стрекоз и перемерили у них крылья, полученные точки, скорее всего, сосредоточились бы вокруг вершины холма.
А теперь представьте, что произошла мутация, которая изменила длину стрекозиных крыльев. Если приспособленность насекомого от этого уменьшится, другие насекомые с лучшей конструкцией крыла выиграют в конкурентной борьбе у потомков мутанта. Но если мутация подтолкнет стрекозу ближе к вершине нашего графика, естественный отбор будет ей благоприятствовать. Другими словами, естественный отбор, как правило, подталкивает жизнь к максимальной приспособленности.
В подобной ситуации лучшей стратегией могут показаться гигантские мутационные скачки, позволяющие видам быстро эволюционировать. Вместо медленного подъема по склону холма одна-единственная мутация могла бы закинуть стрекозу на самую его верхушку и обеспечить ей максимальную приспособленность. Но мутации — катапульты без прицела. Они происходят случайным образом и могут забросить нашу стрекозу в любую точку эволюционного поля. Вместо того чтобы приземлиться точнехонько на вершине холма, она может оказаться где-нибудь совершенно в другом месте и обнаружить, что доставшиеся ей крылья слишком длинны или слишком коротки. С другой стороны, мутации небольшого действия могут гораздо надежнее подтолкнуть стрекозиный вид в нужном направлении. Даже небольшое преимущество, которое позволит особи оставить чуть больше потомков, чем ее товарки, может позволить соответствующей мутации через несколько десятков поколений широко распространиться в популяции.
Конечно, этот холм и подъем по склону к вершине — всего лишь метафора, к тому же сильно упрощенная. С одной стороны, эволюционный ландшафт не постоянен. Любые изменения окружающей среды — подъем или падение температуры, вторжение или уход видов-конкурентов, развитие других генов — могут привести к тому, что холмы станут долинами, а долины — холмами. Вообще, эволюционный ландшафт похож скорее на слегка волнующуюся океанскую поверхность.
Кроме того, эволюция не всегда производит наилучшее сочетание генов. К тому же иногда гены распространяются без какого бы то ни было участия естественного отбора. Вообще, наследственность напоминает шарик на колесе рулетки. Если бросать шарик достаточно долго, то в половине случаев выпадет черное, в половине — красное. Но если ограничиться лишь несколькими бросками, может оказаться, что все они придутся на красное. Так и с генами. Пусть при скрещивании двух гибридных растений гороха получено четыре новых растения. Каждое из них с вероятностью 25% унаследует два гена гладкости, с вероятностью 25% — два гена сморщенности, а с вероятностью 50% останется гибридным. Но это не значит, что из четырех реальных растений одно будет со сморщенными горошинами, одно — «чистокровное» с гладкими, а два оставшихся будут гибридами. На самом деле они все могут оказаться гладкими и даже все сморщенными. Каждое растение гороха — это отдельный бросок генетической кости.
Конечно, в больших популяциях серьезных статистических флуктуаций не бывает, но маленькие популяции могут иногда развиваться вопреки вероятностям Менделя. Если несколько десятков лягушек в изолированном пруду скрещиваются только между собой, то мутантный ген может появиться и распространиться среди них без всякой помощи естественного отбора — благодаря всего лишь случайному повороту эволюционной рулетки. При этом стоит мутантному гену распространиться по всей популяции, и прежний ген пропал навсегда.
Синтетическая теория эволюции
Фишер, Райт и другие ученые, первыми показавшие, как генетика обеспечивает ход эволюции, не были биологами-практиками. В основном это были экспериментаторы, работавшие в лабораториях, и теоретики, увлеченные математическими методами. Но в 1930-х гг. другие исследователи начали применять их идеи на практике: искать закономерности видового разнообразия в окружающей природе и систематизировать окаменелости — свидетельства развития жизни с древнейших времен. Если Фишер и Райт создали сплав генетики и эволюционной теории, то следующее поколение ученых добавило к этому новые ингредиенты из экологии, зоологии и палеонтологии. К 1940-м гг. недарвинистские объяснения эволюционных идей — о внутренних силах, направляющих ламаркианскую трансформацию, или о гигантских мутациях, создающих новые виды за одно поколение, — стали казаться безнадежно устаревшими.
Серьезный шаг к созданию синтетической теории эволюции был сделан в 1937 г.; им стала публикация книги «Генетика и происхождение видов» советского ученого Феодосия Добжанского. За девять лет до выхода книги Добжанский приехал в США работать в лаборатории Томаса Моргана в Колумбийском университете; биологи этой лаборатории изучали плодовую мушку Drosophila melanogaster, пытаясь понять подлинную природу мутаций. Добжанский в лаборатории выглядел чудаком; для остальных сотрудников «мушиной комнаты» существовали только те плодовые мушки, которые жили в молочных бутылках в их тесной лаборатории, но Добжанский занимался изучением насекомых в дикой природе с самого детства, которое он провел в Киеве. Подростком он считал целью жизни собрать для своей коллекции все виды божьих коровок, обитающие в регионе. «Вид божьей коровки до сих пор вызывает у меня прилив гормонов, — скажет Добжанский много лет спустя. — Первая любовь не забывается».
Добжанский научился безошибочно выделять естественные вариации в различных популяциях божьих коровок. Прочитав о работе Моргана по исследованию мутаций, он заинтересовался тем, нельзя ли таким способом разобраться и с любимыми божьими коровками. Однако генетика божьих коровок оказалась слишком сложной, и Добжанский тоже переключился на Drosophila melanogaster, хорошо изученных мушек Моргана.
Добжанский быстро приобрел репутацию блестящего генетика и в возрасте 27 лет получил приглашение приехать в Нью-Йорк и познакомиться с новейшими методами «мушиной комнаты». Когда Добжанский с женой появились в Колумбийском университете, лаборатория Моргана выглядела ужасно: крохотная комнатка буквально кишела тараканами. Но в 1932 г. ситуация изменилась к лучшему, и Морган собрал чемоданы и перебрался в Калифорнийский технологический институт. Добжанский последовал за ним и прекрасно устроился среди апельсиновых рощ.
В Калифорнии Добжанский сумел наконец подступиться к ответам на вопросы, которые задавал себе еще в юности: какие генетические законы определяют разницу между популяциями одного вида? Большинство биологов того времени считало, что внутри одного вида все особи имеют практически идентичный набор генов. В конце концов, Моргану, чтобы зарегистрировать среди своих мушек естественную мутацию, потребовалось несколько лет. Но эти идеи родились в лаборатории.
Добжанский же начал изучать гены плодовых мушек в дикой природе. Он путешествовал от Канады до Мексики, отлавливая особей вида Drosophila pseudoobscura. Сегодня биологи могут расшифровать каждую букву в генетическом коде вида, но во времена Добжанского технологии были гораздо грубее. Он мог судить о разнице между хромосомами только на глаз, разглядывая их под микроскопом. Но даже при помощи таких простых методов он сумел установить, что набор генов в разных популяциях D. pseudoobscura не идентичен. У каждой популяции плодовых мушек, которую он изучал, обнаруживались в хромосомах характерные маркеры, отличавшие их от особей остальных популяций.
Несколько десятилетий спустя, когда генетики придумали более точные способы сравнения ДНК, выяснилось, что изменчивость, обнаруженная Добжанским среди плодовых мушек, — это правило, а не исключение. К примеру, многие биологи когда-то считали, что генетические коды людских рас сильно различаются между собой. Некоторые даже утверждали, что расы — это отдельные виды. Но современные исследования генетики человека доказывают ошибочность этих представлений. «Биологический взгляд на расы, к которому мы привыкли, не имеет ничего общего с генетической реальностью, которую мы сегодня обнаруживаем», — говорит генетик из Стэнфордского университета Маркус Фельдман.
Из 25 000 генов человеческого генома примерно 6000 существуют в различных версиях (известных как аллели). Особенности, по которым мы традиционно делим наш вид на расы, — цвет кожи, волос, форма лица — определяются всего лишь несколькими генами. Громадное большинство вариативных генов не имеют отношения к так называемым расовым границам. Гораздо больше разнообразия внутри любой отдельно взятой популяции людей, чем между популяциями. Если бы все люди на Земле, за исключением какого-нибудь небольшого племени в уединенной долине Новой Гвинеи, были уничтожены, уцелевшие все равно сохранили бы 85% генетического разнообразия всего нашего вида.
Открытие Добжанского о генетическом разнообразии внутри вида поставило перед учеными серьезный вопрос: если не существует стандартного набора генов, характерного для данного вида, что в таком случае определяет биологический вид и границы между видами? Добжанский нашел верный ответ: половое размножение. Вид — это всего лишь группа организмов, члены которой скрещиваются главным образом между собой. Два животных, принадлежащих разным видам, вряд ли смогут спариться, и даже если это произойдет, вряд ли будет жизнеспособное потомство. Биологи давно знали, что межвидовые гибриды часто погибают прежде, чем вылупляются из яйца, или вырастают во взрослые особи, неспособные к размножению. Эксперименты, проведенные Добжанским на фруктовой мушке, показали, что такую несовместимость вызывают специфичные гены, которые у разных видов конфликтуют.
В книге «Генетика и происхождение видов» Добжанский дал краткое объяснение, как на самом деле возникают новые виды. Мутации происходят постоянно. Некоторые мутации при определенных обстоятельствах могут оказаться вредными, но значительное их число — как это ни удивительно — никак не сказывается на жизнеспособности. Эти нейтральные изменения проявляются и закрепляются в разных популяциях, создавая разнообразие гораздо большее, чем можно было вообразить. С эволюционной точки зрения это хорошо, поскольку при изменении внешних условий нейтральные мутации могут оказаться полезными и будут подхвачены естественным отбором.
Кроме того, разнообразие — сырье, из которого образуются новые виды. Если мухи некой популяции начинают скрещиваться только между собой, их генетический профиль начинает отдаляться от генетического профиля остальной части вида. В изолированной популяции возникают новые мутации, некоторые из них подхватываются естественным отбором и распространяются до тех пор, пока все мухи популяции не станут их носителями. Однако, поскольку эти изолированные мухи скрещиваются только внутри собственной популяции, мутации не распространяются на остальные виды. Изолированная популяция становится все более генетически обособленной. При этом некоторые из ее новых генов могут оказаться несовместимыми с генами остальных мушек вида.
Если изоляция продлится достаточно долго, утверждал Добжанский, мухи могут полностью потерять способность к скрещиванию. Они могут просто лишиться физической возможности — или тяги — к спариванию с другими мухами. Даже если такая пара произведет потомство, гибриды могут оказаться стерильными. Если это произойдет, то даже после прекращения изоляции эти мушки смогут жить рядом с другими, очень похожими насекомыми — и все же скрещиваться только между собой. Родится новый вид.
Книга Добжанского вышла в 1937 г. и произвела сильное впечатление на биологов далеко за пределами узкой области — генетики. К примеру, в горах Новой Гвинеи орнитолог по имени Эрнст Майр нашел ее чрезвычайно полезной. Майр занимался поиском новых видов птиц и нанесением на карту их ареалов. Это была очень трудная задача, и не только из-за малярии или охотников за головами. Как и другие орнитологи, Майр испытывал трудности, пытаясь разобраться, заслуживает ли та или иная группа птиц права называться самостоятельным видом. К примеру, можно определять виды райских птиц по цвету перьев, но иногда среди них наблюдается огромное разнообразие по другим признакам — на одной горе птицы могут отличаться особенно длинным хвостом, на другой — их хвост может быть срезан под прямым углом.
Как правило, биологи стремились внести в этот хаос порядок, выделяя подвиды — местные популяции вида, у которых достаточно отличий, чтобы обозначить их отдельным названием. Но Майр видел, что навешивание ярлычка «подвид» — далеко не лучшее решение. В некоторых случаях подвиды не имели четких различий, а плавно переходили друг в друга, подобно цветам радуги. В других случаях то, что выглядело как подвид, могло оказаться самостоятельным видом.
Прочитав «Генетику и происхождение видов», Майр понял, что исследователи не должны считать загадку видов и подвидов лишней головной болью: на самом деле это живое доказательство эволюционных процессов, о которых писал Добжанский. Вариации возникают в разных точках ареала и создают разницу между популяциями. В одной части ареала они могут породить длинный хвост, в других — хвост срезанной формы. Но поскольку птицы спариваются со своими соседями, эти вариации не выделяются в отдельный вид.
Один из ярчайших примеров того, чем способен обернуться перенос генов между популяциями, — феномен, известный как «кольцевой вид». К примеру, в Северном море обитает вид птиц, известный как серебристая чайка. У нее серая спинка и розовые лапки. Если двигаться на запад по ее ареалу, то в Канаде вы снова встретите серебристых чаек, которые, за исключением незначительной разницы в окраске, выглядят примерно так же, как их родичи в Северном море. Однако к тому моменту, когда вы пересечете Канаду, разница будет уже бросаться в глаза, а в Сибири у этих чаек будет темно-серая спинка и не розовые, а скорее желтые лапки. Тем не менее, несмотря на различия, в науке все эти птицы классифицируются как серебристые чайки. Если вы продолжите двигаться на запад, в Европу, спинка у чаек будет становиться все темнее, а лапки все желтее. Вместе с темными желтоногими чайками вы доберетесь до самого Северного моря, откуда начали свое путешествие. Здесь эти птицы, известные как черноспинные чайки, живут рядом с сероспинными розовоногими серебристыми чайками.
Поскольку эти две группы птиц выглядят по-разному и не спариваются, к ним относятся как к представителям разных видов. Однако менее крупные черноспинные чайки и серебристые чайки живут на разных концах непрерывного перекрывающегося кольца, внутри которого все птицы могут спариваться со своими непосредственными соседями. При существующих путях возникновения и распространения мутаций кольцевые виды — это именно то, что должно было получиться.
Популяция птиц, отрезанная от соседей, может развиться в самостоятельный вид. Майр утверждал, что чаще всего это происходит при географическом обособлении популяции. Так, язык ледника может перегородить горную долину, разделив один вид птиц на две изолированные популяции. Подъем уровня океана может превратить полуостров в цепь островов, создав на каждом из них обособленную популяцию птиц. Подобная изоляция не обязательно должна продолжаться вечно; достаточно, чтобы барьер просуществовал какое-то время и чтобы изолированная популяция успела за это время стать генетически несовместимой с остальными особями вида. Если ледник растает или уровень океана опустится, вновь превратив острова в единый полуостров, птицы уже не смогут скрещиваться между собой. Они будут жить бок о бок, но их эволюционные пути разойдутся.
Биологи, такие как Майр и Добжанский, внесли серьезный вклад в синтетическую теорию эволюции; материалом для их исследований служили ныне обитающие на Земле виды животных. Но если они правы, то те же процессы должны были протекать не только сегодня, но и миллионы и миллиарды лет назад — начиная с того самого момента, когда на планете зародилась жизнь. Однако даже в 1930-х гг. многие палеонтологи еще отказывались видеть в ископаемых останках и окаменевших костях результат действия естественного отбора. Они видели в эволюции древних животных долгосрочные тенденции, которые, казалось, следовали в одном, раз и навсегда заданном направлении. Лошади, казалось, неуклонно развивались из существ размером с собаку во все более крупные формы; в то же время пальцы на ногах у них столь же неуклонно уменьшались, пока наконец не превратились в копыта. Предки слонов первоначально были размером со свинью, и для того, чтобы их потомки превратились в колоссальных зверей, потребовались десятки миллионов лет; одновременно зубы этих животных последовательно усложнялись и увеличивались в размерах. Палеонтологи утверждали: нет никаких признаков того, что природа экспериментировала случайным образом, нет тупиковых ветвей, нет разнонаправленных изменений, которые мог бы дать естественный отбор.
Генри Осборн, президент Американского музея естественной истории, объявил эти тенденции доказательством того, что эволюцией — в значительной степени — управляет не естественный отбор. Каждая из линий развития млекопитающих уже в самом начале несет в себе потенциал стать тем, чем и становится впоследствии, — лошадью или слоном. «Потенциал чего-то, что может проявиться со временем», — как выразился Осборн. Причем раскрыть этот потенциал вид может только в борьбе со стихиями и с другими животными. «Докажите, что принцип Ламарка неверен, и мы должны будем признать, что в эволюции существует некий третий фактор, о котором мы пока ничего не знаем», — заявил Осборн в 1934 г.
Но один из студентов Осборна палеонтолог Джордж Симпсон не захотел принять этот обновленный ламаркизм. Гораздо сильнее впечатлило Симпсона то, как Добжанский сумел связать генетику и естественный отбор. Прочитав «Генетику и происхождение видов», он решил сам проверить, применимы ли генетические принципы Добжанского к палеонтологической летописи.
Симпсон внимательнее присмотрелся к тенденциям, которые, по утверждению Осборна, свидетельствовали в пользу однонаправленной эволюции. При тщательном исследовании линейные варианты развития развернулись вдруг в густые эволюционные деревья с многочисленными ответвлениями. Оказалось, к примеру, что лошади за последние 50 млн лет принимали самые разные размеры, да и анатомия копыта менялась неоднократно; многие из этих вариантов давно вымерли и не имеют непосредственного отношения к происхождению сегодняшних лошадей.
Если за трансформацию древних видов в сохранившихся образцах действительно отвечал естественный отбор, который ученые исследовали в лабораториях, он должен был развиваться достаточно быстро, чтобы произвести изменения, заметные для палеонтологов. Экспериментаторы «мушиной комнаты» тщательно замерили, как часто появляются мутации у плодовых мушек и как быстро они могут распространяться по популяции путем естественного отбора. Симпсон изобрел собственный метод измерить скорость эволюционных изменений по останкам. Он просмотрел всю громадную коллекцию костей, собранных палеонтологами за предыдущее столетие, тщательно измерил их и построил график их изменения во времени. Симпсон обнаружил, что эволюция в далеком прошлом могла протекать с разной скоростью, быстро или медленно, и что даже внутри одной линии развития она могла ускоряться и замедляться со временем. Кроме того, Симпсон обнаружил, что даже максимальная скорость изменений в останках уступает скорости эволюции, зарегистрированной у плодовых мушек. Таким образом, Симпсону, чтобы разобраться в своих костях, не потребовался никакой загадочный ламарковский процесс; хватило и синтетической теории эволюции.
К 1940-м гг. создатели синтетической теории эволюции успели показать, что генетика, зоология и палеонтология рассказывают, в сущности, одну и ту же историю. Основа эволюционных изменений — мутации; в сочетании с Менделевой наследственностью, переносом генов, естественным отбором и географической изоляцией они способны создавать и новые виды, и новые формы жизни; а за миллионы лет они вполне могли породить все те изменения, которые зафиксировала палеонтологическая летопись. Успех синтетической теории эволюции сделал ее движущей силой всех эволюционных исследований последних 50 лет.
Птичьи клювы и продолжительность жизни рыбок гуппи
Дарвин и помыслить не мог, что можно наблюдать естественный отбор в действии. Максимум, что можно получить, как ему казалось, — вариации голубей на голубятне. В дикой природе, считал он, эволюция идет слишком медленно и постепенно, чтобы ее различало наше сознание, настроенное на короткий срок человеческой жизни, — точно так же невозможно увидеть, как дождь размывает и уносит с собой гору. Но в наши дни биологи, вооруженные синтетической теорией эволюции, научились отмечать вспышки эволюционных изменений, происходящие прямо у нас на глазах.
Дэвид Резник, биолог из Университета Калифорнии в Риверсайде, наблюдает эволюцию в лесах Тринидада, где в ручьях и небольших озерах плавают рыбки гуппи. На равнинах и в предгорьях гуппи угрожают хищники, но выше в горах они могут жить спокойно, поскольку мало кто из хищников способен подняться против течения через водопады и отвесные скалы. Резник начал наблюдать за гуппи в конце 1980-х.
Жизнь гуппи, как и жизнь любого другого животного, проходит по определенному графику — в каком возрасте рыбки достигают половой зрелости, как быстро растут, как долго живут во взрослом состоянии. Биологи-теоретики предсказывали, что график жизни животных может эволюционировать, если мутации, которые вызовут его изменения, дадут животным репродуктивные преимущества. Резник решил проверить эти предсказания.
В озерах, кишащих хищниками, гуппи, жизнь которых проходит быстро, должны быть более успешными, чем те рыбки, которые взрослеют медленно. Под постоянной угрозой гибели для гуппи лучше всего расти как можно быстрее, чтобы как можно раньше начать спариваться и произвести на свет как можно больше отпрысков. Конечно, такая стратегия дорого обходится виду. Слишком быстрый рост может уменьшить естественную продолжительность жизни, а поспешность в производстве потомства не позволяет самке гуппи снабдить детенышей достаточным количеством энергии, и они рискуют погибнуть, не достигнув зрелости. Но Резник рассудил, что риск в любой момент погибнуть от зубов хищников перевешивает все остальные риски.
Чтобы посмотреть, действительно ли происходит такой обмен, Резник выловил в одном из нижних озер, населенных хищниками, несколько гуппи и поселил их в озера, где хищных рыб почти не было. Через 11 лет, проведенных в таких условиях, гуппи стали — в среднем — менее суетливыми в своем жизненном цикле. Взросление стало занимать у них на 10% больше времени, чем у их предков, а весить к моменту наступления зрелости они стали на 10% больше. Кроме того, у них уменьшился объем помета, зато каждая молодая гуппи стала появляться на свет более крупной.
Может показаться, что потратить 11 лет на наблюдения за тем, как рыбки гуппи становятся на 10% больше, — пустая трата времени. Но в истории жизни 11 лет — это крохотная доля мгновения. Скорость эволюции, которую наблюдал Резник, в тысячи раз превосходит ту скорость, которую Джордж Симпсон вычислил по палеонтологической летописи. Симпсон, оценивая скорость эволюционных изменений по ископаемым останкам, мог сравнивать ее только со скоростью эволюции плодовых мушек в лабораториях. При этом никто не мог сказать, можно считать развитие в лаборатории естественным или нет. Но теперь ученые, подобные Резнику, показали, что даже в дикой природе животные могут эволюционировать с невероятной скоростью.
Иногда природа без всякой помощи человека ставит собственные эволюционные эксперименты. В этих случаях биологам остается только наблюдать. После того как Дарвин побывал на Галапагосах, ученые каждые несколько десятков лет возвращаются туда, чтобы заново изучить его загадочных вьюрков. В 1973 гг. супруги-биологи Питер и Розмари Грант, работающие в настоящее время в Принстонском университете, прибыли на острова с целью изучить воздействие естественного отбора на этих птиц.
Погода на Галапагосах обычно меняется по стандартной схеме. Первые пять месяцев года там жарко и дождливо, а затем наступает прохладный сухой период. Но в 1977 г. период дождей так и не наступил. Периодические волнения в Тихом океане, называемые Ла-Нинья, изменили погоду на Галапагосских островах и вызвали катастрофическую засуху.
На островах Дафнии в центре архипелага, где работали Гранты, засуха оказалась просто смертельной. Из 1200 средних земляных вьюрков (Geospiza fortis) погибло больше тысячи. Но Гранты обнаружили, что отбор не был случайным. G. fortis питается в основном семенами, которые расщепляет своим крепким клювом. Мелкие особи могут раскалывать лишь мелкие семена, тогда как более крупные птицы способны раскалывать и более крупные. Через несколько месяцев засухи у мелких G. fortis закончились мелкие семена, и птицы начали гибнуть. Но крупные вьюрки уцелели — они питались семенами, до которых не смогли добраться более мелкие особи. (В частности, речь идет о растении василек колючеголовый, семена которого защищены шипастой оболочкой.)
Пережившие засуху 1977 г. птицы спарились в 1978 г., и Гранты могли своими глазами наблюдать след эволюции на их потомстве. Родилось новое поколение G. fortis, и ученик Грантов Питер Боуг обнаружил, что в среднем клювы у них стали на 4% больше, чем у птиц предыдущего поколения. Большеклювые вьюрки, которые легче перенесли засуху, передали эту свою особенность детям и изменили тем самым генетический профиль всей популяции.
В годы, последовавшие за засухой, птицы продолжали меняться. К примеру, в 1983 г. шли сильные дожди и семена были в изобилии; мелкоклювым птицам жилось хорошо, и Гранты обнаружили, что к 1985 г. средний размер клюва уменьшился на 2,5%. Вьюрки могут меняться быстро, и создается впечатление, что они меняются то туда, то обратно, подобно маятнику. По наблюдениям 4300 средних земляных вьюрков на островах Дафни в период с 1976 по 1993 г. Гранты не смогли обнаружить никакой общей тенденции в изменении размеров их клюва. Если вьюрок имеет клюв, который позволяет ему пережить первый, критичный год жизни, он, скорее всего, выживет и произведет на свет немало потомков. Но в некоторые годы полезен большой клюв, а в некоторые — маленький.
Краткосрочные климатические флуктуации могут заставить популяцию животных гонять по кругу естественного отбора. Но если обстоятельства изменятся, он может долгое время подталкивать популяцию в одном направлении. К примеру, вместо стандартного цикла засух и дождей климат острова столетиями будет становиться все более влажным. Или может случится так, что группа вьюрков поселится на острове, где местные особи давно специализировались на питании семенами определенного вида; в этом случае эволюция может выделить в «новеньких» гены, которые позволят им питаться другими видами пищи. Тогда они смогут избежать конкуренции с местными вьюрками и риска проиграть в этой конкурентной борьбе. И в том и в другом случае, если хватит времени, на свет может появиться новый вид вьюрка.
Как возникают виды
Хотя Гранты не могут сказать наверняка, какие именно долгосрочные факторы действовали на Дарвиновых вьюрков после их появления на Галапагосах, одно известно точно: эволюция не всегда двигалась по кругу. Из одного общего предка она создала 14 видов, каждый из которых отличают характерные только для него адаптационные особенности. Свидетельства эволюции прочно вписаны в гены этих птиц.
По мере того как популяции вьюрков испытывают на себе действие естественного отбора и изоляции, их ДНК становятся все более непохожими друг на друга. Гранты решили поискать генетическую разницу между 14 видами Дарвиновых вьюрков и заручились для этого помощью немецких генетиков. Кроме того, они решили сравнить ДНК галапагосских птиц с ДНК эквадорских тиарисов, которые, по мнению орнитологов, являются ближайшими родственниками островных вьюрков на материке. Исследователи сравнили полученные данные и построили генеалогическое древо. Обнаружив два вида, гены которых были ближе друг к другу, чем к генам остальных видов, они соединяли их ветви, обозначая точкой соединения их вероятного общего предка. Затем соединяли их с более отдаленными родичами — и так до тех пор, пока все птицы не оказались объединены в единое дерево.
Результаты этого исследования, опубликованные в 1999 г., показывают, что все вьюрки и правда происходят от одного общего предка. Все 14 островных видов находятся между собой в более близком родстве, чем любой из них с тиарисом. Первоначальная популяция птиц, похожих на тиариса, появилась на Галапагосах несколько миллионов лет назад и дала начало четырем разным линиям вьюрков. Первыми отделились славковые вьюрки — группа видов, использующих тонкий клюв для ловли насекомых. Затем — вьюрки-вегетарианцы; клюв у них короткий и толстый, птицы с его помощью поедают цветочные почки, бутоны и мякоть фруктов. Наконец, возникли еще две линии: древесные вьюрки, приспособившиеся ловить насекомых на деревьях (к примеру, дятловый древесный вьюрок выковыривает насекомых из щелей при помощи колючки кактуса и держит ее при этом в клюве, формой напоминающем долото), и земляные вьюрки, среди которых и питающийся семенами G. fortis.
Орнитологи делят земляных вьюрков на шесть видов, но, если судить по построенному Грантами и их немецкими коллегами дереву, эти виды едва сформированы. Их гены легко отличимы от генов остальных галапагосских вьюрков, но различить их между собой почти невозможно. Земляные вьюрки по-разному выглядят и ведут себя, но, как и прежде, способны спариваться и давать полноценные гибриды. Другими словами, это шесть нарождающихся видов.
Вьюрки Галапагосских островов, хотя и расходятся на отдельные виды довольно быстро, не являются в этом вопросе рекордсменами. Крупнейший всплеск видообразования на Земле произошел в озере Виктория и других крупных озерах Восточной Африки. Озеро Виктория занимает более 27 000 кв. миль и отличается очень ровным дном — плоским, как бильярдный стол. Это место обитания группы рыб, известных как цихлиды. В озере Виктория живет 500 видов этих мелких ярко окрашенных рыбок, и ни один из этих видов не встречается нигде больше на Земле. Для каждого вида цихлид характерна какая-то черта, которая отличает его от всех остальных обитателей озера. Некоторые цихлиды соскребают водоросли с камней зубами; другие раскалывают раковины моллюсков; третьи выедают глаза у цихлид других видов. У некоторых видов существует ритуал ухаживания, при котором самцы строят на дне озера настоящие замки из песка, а самки их потом оценивают. Некоторые цихлиды носят своих мальков во рту.
В 1995 г. на озеро Виктория прибыла группа геологов; ученые намеревались исследовать донные отложения озера и заглянуть с их помощью на несколько сотен тысяч лет в прошлое. Дело в том, что реки приносят в озеро пыльцу растений, пыль и грязь, которые год за годом аккуратно откладываются на дне. Геологи считали, что, пробурив дно озера, получат керн из озерных отложений за сотни тысяч лет и смогут прочитать по нему историю окружающих лесов и саванн. Но им удалось забуриться в ил всего лишь на 9 метров — другими словами, дойти до ила, сформировавшегося 14 500 лет назад — когда все следы озера исчезали.
Извлеченные со дна керны показали, что 14 500 лет назад самые глубокие участки озера Виктория были покрыты травой. Судя по всему, во время оледенения в этих местах стоял прохладный сухой климат. Реки, питающие озеро, пересохли, и вся вода из озера попросту испарилась. На протяжении последних миллионов лет оледенения приходили и уходили, и котловина озера Виктория то пересыхала, то вновь наполнялась водой. В последний раз, когда растаяли ледники, озеро за несколько столетий разлилось до нынешних размеров.
Пересохшее озеро — неподходящее место для рыб. Предки викторийских цихлид в то время, скорее всего, обитали в окрестных ручьях, а когда вода вернулась в озеро, туда же попал и единственный вид этих рыбок. Все цихлиды, живущие сегодня в озере Виктория, находятся в близком родстве между собой, но сильно отличаются от цихлид из других рек и озер. У этих рыб сходные гены, как у братьев и сестер. Гены показывают, что после наполнения озера туда проник единственный вид — рыбки, которые носят своих мальков во рту. После этого за время, примерно соответствующее возрасту человеческой цивилизации, из этой единственной линии возникло 500 видов. Вглядитесь в воды озера Виктория с точки зрения эволюции — и вы увидите биологический взрыв.
Судя по всему, этот эволюционный бум произошел потому, что нужное животное оказалось в нужном месте в нужное время. Цихлиды — идеальная рыба для быстрой специализации. С одной стороны, у них есть дополнительная пара челюстей в глубине рта; если использовать ее для измельчения пищи, передние челюсти останутся свободными и смогут развиться в какой-нибудь специализированный инструмент для хватания, соскребания водорослей или иных действий. Их зубы тоже продемонстрировали удивительную эволюционную гибкость, превратившись в тупые пеньки, острые шильца или плоские лопаточки. В результате тело цихлиды оказалось прекрасным материалом в руках эволюции, которая в короткий срок изваяла из него поразительное количество самых разных форм.
Не исключено, что свою роль в эволюционном взрыве сыграла изощренная половая жизнь цихлид. Цихлиды-самцы прикладывают для привлечения самок невероятные усилия, танцуют сложнейшие танцы или строят из песка и гальки настоящие замки. Если самке нравится увиденное, она выпускает икру, которую самец тут же оплодотворяет. Выбор самки определяется генами, и у некоторых самок может проявиться предпочтение определенного оттенка красного цвета, или особенно крутых стен песчаного замка, или какого-то определенного коленца брачного танца. Подобные предпочтения распространяются среди самок, и они дружно перестают обращать внимание на остальных самцов. Со временем брачные предпочтения могут привести к изоляции некоторой популяции рыб и превратить ее в новый вид.
Когда 14 000 лет назад цихлиды попали в озеро Виктория, они освободились от эволюционных ограничений, с которыми приходилось считаться их предкам в ручьях и реках. Реки часто меняют свои русла, они подвержены внезапным разливам и засухам. В таких условиях эволюция не поддерживает рыб, слишком специализированных для жизни только на одном участке реки; успешны, как правило, только рыбки, способные выжить в самых неожиданных условиях. Но цихлиды, заселившие озеро Виктория, оказались в куда более стабильных условиях, где можно было спокойно приспосабливаться к конкретным местам обитания: скалистым берегам или более глубоким участкам с ровным песчаным дном. Можно было быстро адаптироваться к очень конкретному образу жизни — и не быть за это наказанными.
В настоящее время биологи изучают генетические различия между цихлидами и пытаются определить, как именно формировались виды в озере Виктория, но времени у ученых почти не осталось. В 1950-х и 1960-х гг. в озере появился новый вид рыб. Нильский окунь давно обитает в некоторых других озерах Восточной Африки и вырастает до двух метров длиной; мелочь вроде цихлид вполне ему по вкусу. Эта рыба была намеренно завезена в озеро Виктория как новый источник пищи для окрестных жителей. Нильскому окуню в озере понравилось, и уловы рыбаков с тех пор выросли вдесятеро. Но процветает этот хищник за счет поедания цихлид.
Одновременно вспашка земель и вырубка лесов вызвали сильную эрозию почв вокруг озера. Верхний слой почвы попадает в озеро, делая прозрачную прежде воду мутной. Цихлиды, столь чуткие к внешнему облику партнера, уже не могут различить необходимые признаки; дело заканчивается тем, что самки спариваются с самцами других близкородственных видов. Нарушается репродуктивная изоляция, которая и заставляла этих рыб принимать сотни самых разных форм.
Всего за 30 лет илистая муть и нильский окунь уничтожили половину всех видов цихлид в озере Виктория. Похоже, что человек, едва познакомившись с взрывным видообразованием, сразу же положит ему конец.
Борьба с простудами и естественный отбор
В XX в. концепция естественного отбора прошла большой путь. В 1900 г. многие ученые сомневались — не столько, может быть, в реальности естественного отбора, сколько в его значении. К 2000 г. ученые получили возможность наблюдать, как естественный отбор меняет жизнь и формирует новые виды. Мало того, ученые обнаружили, что естественный отбор действует в самых неожиданных местах. Везде, где имеются три основных условия, сформулированные Дарвиным, — размножение, изменчивость и репродуктивные преимущества через конкуренцию, — можно почувствовать действие естественного отбора.
К примеру, наше тело борется с болезнями при помощи иммунной версии естественного отбора. Когда какой-нибудь вирус или другой паразит проникает внутрь организма, наша иммунная система пытается организовать атаку на него. Но чтобы отбиться от оккупантов, иммунная система должна сначала распознать противника. В противном случае она будет нападать на все подряд, включая и клетки собственного тела. Для точной настройки иммунная система использует эволюционные возможности.
При попадании в организм любой посторонней субстанции первыми ее встречают особые иммунные клетки — В-лимфоциты. Эти клетки снабжены рецепторами, которые позволяют им улавливать инородные вещества — к примеру, токсины, вырабатываемые бактериями, или фрагменты белковой оболочки вируса. Когда В-лимфоцит захватывает эти вещества (их называют антигенами), иммунная система получает сигнал и начинает производить миллионы новых клеток.
Новые клетки начинают вырабатывать антитела — свободноплавающие версии того самого рецептора, который первым уловил антиген. Антитела курсируют по всему телу и, встретив свой антиген, захватывают его. Одним концом они удерживают добычу, другим — расправляются с ней. Антитела способны нейтрализовать токсин, просверлить отверстие в оболочке бактерии или привлечь к своей добыче внимание лейкоцитов — клеток-убийц иммунной системы, — которые поглощают паразита.
В-лимфоциты создают особые антитела для каждого из миллиардов возможных антигенов. В качестве антигена может выступать что угодно, продукт жизнедеятельности любого паразита — от вирусов и одноклеточных грибков до червей-анкилостом. Точность соответствия антител антигену гарантирует, что иммунная система будет правильно распознавать и уничтожать пришельцев, не трогая при этом клеток собственного тела. Но в нашей ДНК нет инструкции по структуре антител для каждого антигена, с которым могут столкнуться наши В-лимфоциты. Антигенов миллиарды, а в человеческом геноме всего лишь около 25 000 генов. Наша иммунная система использует другой, гораздо более эффективный способ создавать антитела: В-лейкоциты эволюционируют.
Эволюция начинается в тот самый момент, когда В-лимфоциты формируются в глубине нашего костного мозга. В процессе деления клеток гены, отвечающие за структуру рецепторов, стремительно мутируют, создавая миллиарды рецепторов всевозможных случайных форм. Это первый шаг эволюционного процесса: создание вариантов.
Молодые В-лимфоциты выбираются из костного мозга в лимфатические узлы, где скапливаются антигены. Большинство В-лимфоцитов не могут сцепиться с антигеном, но иногда встречаются исключения: среди миллиардов версий может случайно оказаться рецептор, способный уловить именно этот антиген. Совпадение не обязательно должно быть точным; В-лимфоцит, сумевший захватить хоть что-то, получает стимул бешено делиться. Этот момент нетрудно заметить: когда удачливый В-лимфоцит начинает размножаться, лимфатический узел распухает.
Некоторые из потомков удачливого лимфоцита сразу же приступают к выработке антител той же структуры, что рецептор, захвативший антиген. Но остальные продолжают делиться, не производя антител. При делении эти В-лимфоциты мутируют в миллион с лишним раз быстрее, чем обычные клетки человеческого тела. При этом мутациям подвержены только гены, отвечающие за строение рецепторов антигенов — и, соответственно, антител. Чтобы выжить, В-лимфоцит должен сцепиться с антигеном. Если ему это не удается, он погибает. Если удастся, снова делится и мутирует. Мутации идут цикл за циклом, В-лимфоциты конкурируют между собой и постепенно получают рецепторы, все более точно соответствующие структуре антигена. Менее адаптированные клетки не могут зацепить антиген и погибают. Всего за несколько дней такой эволюционный процесс может поднять способность В-лимфоцитов захватывать определенный антиген в 10–50 раз.
Представьте, что было бы, если бы Пейли знал об антителах, настолько хорошо приспособленных к борьбе с определенными болезнями. Он наверняка сказал бы, что антитела — дело рук творца, что клетка, так здорово придуманная и идеально подогнанная к своему антигену, не могла возникнуть сама по себе. Тем не менее каждый раз, когда мы болеем, наш организм доказывает обратное.
Эволюция в компьютерной модели
Действие естественного отбора можно увидеть не только в нашем собственном теле, но и в компьютере. Программа жизни, какой мы ее знаем, записана на единственном языке — языке ДНК и РНК. Но некоторые ученые создают в компьютерах — без всякого участия биохимии — то, что сами они называют жизненными или биологическими формами. Подобно настоящей, основанной на ДНК жизни они способны самостоятельно развиваться. Пока критики задаются вопросом о том, насколько живыми можно считать эти странные создания, они, несмотря ни на что, демонстрируют всем желающим, как мутации и естественный отбор превращают случайность в упорядоченную сложность. Мало того, они показывают, что естественный отбор может создавать новые виды технологии.
Одна из самых сложных форм искусственной жизни «обитает» в компьютерах Калифорнийского технологического института. Кристоф Адами, Чарльз Офрия и другие ученые создали там «заповедник» под названием Avida (А от слова artificial — искусственный, и vida — «жизнь» по-испански). Организмы, живущие в заповеднике, представляют собой компьютерные программы, т. е. наборы команд. На протяжении всей жизни организма эти команды выполняются одна за другой, а по достижении конца указатель команд автоматически возвращается к началу программы, и все повторяется.
Программа цифрового организма может создавать собственные копии, которые становятся самодостаточными организмами. Каждый организм размножается до тех пор, пока в заповеднике есть свободное место. Позволяя цифровым организмам мутировать при размножении, Адами может заставить их эволюционировать. Мутации представляют собой случайные изменения в программе. Иногда одна команда спонтанно заменяется другой; иногда при попытке самокопирования происходит ошибка и вместо одной строки в дочерней программе появляется другая; иногда в программу случайно добавляется лишняя команда или, наоборот, одна из команд пропадает. Мы помним, что настоящие мутации обычно вредны для биологических организмов; точно так же случайные программные изменения в цифровых организмах Avida чаще всего порождают ошибку, замедляют работу программы или просто убивают ее. Но иногда в результате мутации цифровой организм начинает размножаться быстрее.
Адами ставит в своем заповеднике эксперименты, имитирующие эволюцию биологических организмов. В одном из первых экспериментов он создал цифровой организм, способный к размножению, но несущий в себе несколько бесполезных (и безвредных) команд. Эта программа стала родоначальником миллионов версий, которые в результате мутаций постепенно разделились на несколько «штаммов». Через несколько тысяч поколений некоторые штаммы стали более успешными, чем другие, и получили гораздо большее распространение. В основе всех успешных цифровых организмов лежала короткая программа. Во всех случаях мутации постепенно убрали из текста программы все лишнее и сократили до простейшего варианта, способного к размножению, — примерно до одиннадцати строк.
В данном эксперименте эволюция ведет цифровые организмы к максимальной простоте, потому что они живут в простой среде. В дальнейших экспериментах Адами попытался сделать мир Avida более похожим на реальный мир; теперь его цифровые организмы должны питаться. Пищей в компьютерном мире служат цифры — цифровые организмы поглощают бесконечные цепочки нулей и единиц, переваривают их и превращают в новые формы. Точно так же, как бактерия поедает сахар и превращает его в необходимые для жизни белки, правильно построенный цифровой организм считывает числа, которыми снабжает его Адами, и перерабатывает их в другие формы.
В природе эволюция поддерживает организмы, способные превращать пищу в белки, при помощи которых организм может более успешно размножаться. Адами создал в Avida аналогичную систему поощрения цифровых организмов. Он составил для своих организмов список задач, которые те должны выполнить, — к примеру, считать число и преобразовать его в обратное, так что 10101 превратится в 01010. Если организм развивает у себя способность делать это, Адами поощряет его, увеличивая скорость выполнения его программы. Если программа выполняется быстрее, размножаться организм тоже может быстрее. Вознаграждение за выполнение более сложных операций, естественно, выше, чем за выполнение простых. Такая система вознаграждения радикально изменила направление эволюции в цифровом мире. Теперь здешние программы не превращаются в простейшие вирусоподобные организмы, а эволюционируют в сложные системы обработки данных.
В результате в заповеднике Avida возникают новые программы, не похожие ни на что написанное человеком. Непривычная структура этих программ привлекла внимание компании Microsoft, которая взяла на себя финансирование некоторых исследований Адами. Не секрет, что наша ДНК в некоторых отношениях похожа на необычную компьютерную программу, но эта программа способна без сбоев управлять человеческим телом (а в нем порядка триллиона клеток) в течение 70 лет. Похоже, что процедуры обработки информации, возникающие в процессе эволюции, более устойчивы, чем созданные человеком. В Microsoft хотели понять, удастся ли когда-нибудь, вместо того чтобы писать программы, «выращивать» их при помощи эволюционных процессов. Программы, которые сегодня развиваются в «заповеднике» Avida, соотносятся по сложности с электронными таблицами примерно так, как бактерия — с синим китом. Тем не менее эволюция создала синих китов, и можно себе представить, что в искусственном цифровом мире она сможет когда-нибудь создать и электронные таблицы. Тогда задачей человека будет так расположить эволюционные холмы и долины цифрового мира, чтобы электронные таблицы стали максимально пригодными.
Avida — продукт нарождающейся науки, которая получила название эволюционной кибернетики. Ее приверженцы делают одно открытие за другим. Так, выяснилось, что естественный отбор способен формировать не только программное обеспечение (software), но и электронные системы (hardware). Можно поставить перед компьютером задачу: разработать несколько тысяч различных проектов некоего устройства, а затем испытать их при помощи моделирования. Варианты, которые проявят себя при испытаниях наилучшим образом, следует сохранить, а затем, внося в них случайные небольшие изменения, получить следующее поколение схем. В принципе, такой формулировки достаточно, чтобы компьютер разработал и выдал на-гора несколько необычных изобретений.
К примеру, в 1995 г. инженер Джон Коуза воспользовался методами эволюционной кибернетики для разработки низкочастотного фильтра — прибора, способного заглушить все звуки выше определенной частоты. В качестве предельной Коуза выбрал частоту 2000 циклов в секунду. После десяти поколений компьютер выдал схему, которая приглушала все частоты выше 500 Гц, но полностью исключала только частоты выше 10 000 Гц. После сорок девятого поколения он создал схему, у которой коэффициент пропускания резко падал на 2000 Гц. Компьютер придумал схему лестничного типа из индуктивностей и емкостей с семью «ступеньками». Точно такое же устройство изобрел в 1917 г. Джордж Кемпбелл из AT&T. Компьютер без всяких подсказок со стороны Коузы нарушил патент.
После этого Коуза с коллегами разработали подобным образом и другие известные человечеству приборы: термометры, усилители с дополнительными низко- и высокочастотными головками, системы управления роботами и десятки других устройств, многие из которых повторили достижения великих изобретателей. Недалеко то время, предсказывают ученые, когда эволюционная кибернетика начнет создавать разработки, обладающие патентной новизной.
В настоящее время эволюция такого рода ограничена внутрикомпьютерным пространством, а существование ее полностью зависит от людей — программистов и инженеров. Но не исключено, что всего через несколько десятилетий автономные роботы смогут самостоятельно эволюционировать, придавая себе невиданные, невообразимые формы, которые никогда не смог бы придумать человек. В знак близких перемен два инженера из Университета Брандайса в Массачусетсе, Ход Липсон и Джордан Поллак, объявили в августе 2000 г. о том, что они дали компьютеру задание разработать при помощи эволюции шагающего робота.
Компьютер Липсона и Поллака разработал 200 проектов такого робота, каждый из них «с нуля». При помощи моделирующей программы Липсон и Поллак определили, как быстро каждый из этих роботов сможет передвигаться по полу, заменили слабо приспособленных роботов более приспособленными и всех оставшихся роботов подвергли мутации. Через несколько сотен поколений компьютер получил задание изготовить несколько самых успешных роботов из литой пластмассы. Эти роботы, разработанные при помощи эволюционных процессов, передвигаются как гусеницы-землемеры, крабы и другие животные, но внешне не похожи ни на каких реальных животных (и на животноподобных роботов, созданных человеком).
Зарождение искусственной эволюции — это триумф, которого Дарвин даже вообразить не мог. Четыре миллиарда лет назад на Земле появилась новая форма материи: субстанция, способная хранить информацию и воспроизводить себя, а также выживать при постепенном изменении этой информации. Мы, люди, тоже произошли от этой изменчивой субстанции, но теперь мы, возможно, научимся использовать ее законы для создания новых форм, полупроводников и пластмасс, бинарных потоков энергии.