Книга: Космос: Эволюция Вселенной, жизни и цивилизации
Назад: Глава III. Гармония миров
Дальше: Глава V. Блюз красной планеты

Глава IV. Небеса и преисподняя

Девять миров помню я.
Снорри Стурлусон. Младшая Эдда. 120в

Я есть смерть, великий разрушитель миров.
Бхагавадгита

Врата рая и ада рядом, они неразличимы.
Никос Казандзакис. Последнее искушение Христа
Земля — чудесное и относительно спокойное место. Ход вещей меняется, но медленно. Можно прожить целую жизнь и никогда не столкнуться со стихийным бедствием страшнее урагана. Это делает нас благодушными, расслабленными и беззаботными. Но естественная история непреложно свидетельствует: миры подвергались опустошению. Даже мы, люди, достигли сомнительных технических успехов в деле устройства собственных катастроф, как преднамеренно, так и по небрежности. Ландшафты других планет, где сохранились приметы далекого прошлого, являют нам бесчисленные следы грандиозных катаклизмов. Все дело во временной шкале. Событие, немыслимое на отрезке в сто лет, в течение ста миллионов лет может оказаться неизбежным. Но даже на Земле, даже в нашем столетии случались очень странные природные явления.
Ранним утром 30 июня 1908 года в Центральной Сибири через все небо с огромной скоростью пронесся гигантский огненный шар. В том месте, где он коснулся горизонта, произошел невероятной силы взрыв. На площади в 2000 квадратных километров повалило лес, а вблизи места падения огненная вспышка сожгла тысячи деревьев. Взрыв породил в атмосфере ударную волну, дважды обогнувшую Землю. В течение двух следующих дней в воздухе оставалось столько мелкой пыли, что рассеянный ею свет позволял читать газету на улицах ночного Лондона, за 10 000 километров.
Правительство царской России не могло, конечно, озаботиться исследованием столь «тривиального» события, тем более что случилось оно далеко в Сибири, среди темных тунгусов. Лишь через десять лет после революции для анализа почвы и опроса свидетелей была отправлена первая исследовательская партия. Вот некоторые из собранных ею рассказов.
Рано утром, когда все еще спали, сильный толчок подбросил в воздух чум вместе со всеми, кто в нем находился. А как упали на землю, то вся семья была покрыта синяками, а Акулина с Иваном даже сознание потеряли. Когда они пришли в себя, то услышали ужасный шум и увидели, что вокруг них горит лес и большая часть его повалена.
В завтрак я сидел на крыльце дома на фактории Вановареи лицом был обращен на север. Только я замахнулся топором, чтобы набить обруч на кадушку, как вдруг… небо раздвоилось, и в нем широко и высоко над лесом появился огонь. Вся северная часть неба была покрыта огнем. В этот момент мне стало так горячо, словно на мне загорелась рубашка… Я хотел уж было разорвать и сбросить с себя рубашку, но в этот момент небо захлопнулось, и раздался сильный удар, а меня сбросило на землю сажени на три. В первый момент я лишился чувств, но выбежавшая из избы моя жена ввела меня в избу. После удара пошел такой шум, словно падали камни или стреляли из пушек, и когда я лежал на земле, то прижимал голову, опасаясь, чтобы камни не проломили голову. В момент, когда раскрылось небо, с севера пронесся мимо изб горячий ветер, как из пушки, который оставил на земле следы в виде дорожек…
Когда я сел завтракать около своей сохи, вдруг раздались удары, как бы пушечные выстрелы. Конь упал на колени. С северной стороны над лесом вылетело пламя… Потом вижу — еловый лес пригнуло: ураган, думаю, схватился за соху обеими руками, чтобы не унесло. Ветер был так силен, что снес немного почвы с поверхности земли; а потом этот ураган на Ангаре воду валом погнал: мне все хорошо было видно, т. к. пашня была на бугре.
Грохот перепугал лошадей настолько, что они пустились вскачь, в панике потянули в разные стороны плуги.
Плотники, работавшие на постройке указанного амбара, после первого и второго ударов в полном недоумении крестились; а когда раздался третий удар, так плотники попадали с риштовок на щепки навзничь. Некоторые были так сильно ошеломлены и перепуганы, что нам… приходилось приводить их в чувство и успокаивать… Все мы… тоже бросили работу и пошли в село… Там на улице собрались целые толпы местных жителей, горячо обсуждавших и на всевозможные лады истолковывающих это необыкновенное явление.
Я был в поле. Только я успел запрячь лошадь в борону и стал привязывать другую, как вдруг услышал как бы несильный выстрел из ружья вправо от себя. Я тотчас же повернулся и увидел летящее как бы воспламененное, вытянутое: лоб шире, к хвосту — уже, цветом как огонь днем (белый), во много раз больше солнца, но много слабее его по яркости, так что на него можно было смотреть. Позади пламени оставалась как бы пыль. Она вилась клубками, а от пламени оставались еще синие полосы… Как только скрылось пламя, послышались звуки сильнее ружейных выстрелов, чувствовалось дрожание земли и слышно было дребезжание стекол в окнах зимовья.
Я мыл шерсть на берегу реки Кана, как вдруг сперва послышался шум, как от крыльев испуганной птицы… и по реке пошла вверх по течению волна вроде зыби. После чего последовал один резкий удар… Удар был настолько силен, что один из рабочих… упал в воду.
Это удивительное событие известно как падение Тунгусского метеорита. Некоторые ученые высказали догадку, что его причиной послужил кусок антивещества, аннигилировавший при контакте с обычным веществом Земли и породивший вспышку гамма-излучения. Однако отсутствие радиационного заражения на месте падения не позволяет принять такую гипотезу. Другие утверждали, что Землю прошила насквозь маленькая черная дыра — внедрилась в земные толщи в Сибири и вышла наружу с другой стороны планеты. Но записи атмосферных ударных волн не обнаруживают и намека на объект, вылетевший из Северной Атлантики позднее в тот же день. Возможно, это был космический корабль какой-то невообразимо развитой внеземной цивилизации, потерпевший аварию в отдаленном районе неизвестной планеты из-за неустранимых технических проблем. Но на месте падения не найдено никаких следов подобного аппарата. Каждая из этих гипотез уже когда-либо высказывалась, причем некоторые — более или менее серьезно. Ни одна из них не имеет под собой убедительных доказательств. Главная особенность тунгусского феномена состоит в том, что и ужасный взрыв, и мощная ударная волна, и гигантский лесной пожар были налицо, но на месте падения не образовалось ударного кратера. Похоже, есть только одно объяснение, не противоречащее фактам: в 1908 году на Землю упал обломок кометы.
По необозримым межпланетным просторам разбросано множество объектов — каменных, металлических, ледяных; некоторые частично состоят из органических молекул. Есть такие, что размером с пылинку, но бывают неправильной формы обломки величиной с Никарагуа или Бутан. Иногда, совершенно случайно, на их пути оказывается планета. Тунгусский метеорит, вероятно, был порожден ледяным обломком кометы, который в поперечнике достигал примерно сотни метров (размер футбольного поля), весил миллион тонн и двигался со скоростью около 30 километров в секунду.
Если такое столкновение произойдет сегодня, то по ошибке, особенно в момент паники, его могут принять за ядерный взрыв. Падение кометы способно вызвать все эффекты, характерные для мегатонного ядерного взрыва, в том числе грибовидное облако, за двумя исключениями: не будет гамма-излучения и радиоактивных осадков. Может ли редкое, но естественное явление — падение крупного кометного обломка — привести к развязыванию ядерной войны? Странный был бы сценарий: небольшая комета падает на Землю, как это случалось и раньше с миллионами других комет, и наша цивилизация немедленно самоуничтожается. Не мешало бы нам побольше узнать о кометах, столкновениях и катастрофах. Вот, например, 22 сентября 1979 года американский спутник «Вела» зарегистрировал яркую двойную вспышку света где-то на границе южной Атлантики и западной части Индийского океана. В первую очередь возникло предположение, что это были тайные испытания созданных в ЮАР или в Израиле маломощных ядерных зарядов (килотонны две, примерно в шесть раз меньше, чем у бомбы, сброшенной на Хиросиму). Политические последствия очень серьезно изучались во всем мире. Но что, если эти вспышки вызвало падение небольшого астероида или кометы? Данное объяснение было признано наиболее вероятным, когда воздушная разведка не обнаружила в районе вспышек никаких следов радиоактивности. Вот пример того, как опасно в наш ядерный век не уделять должного внимания ударам из космоса.
Кометы большей частью состоят изо льда — замерзшей воды (Н2O) с небольшими примесями метана (СН4) и аммиака (NH3). Вторгаясь в атмосферу Земли, обломок кометы скромных размеров порождает огромный сияющий болид, способный воспламенять деревья, и мощную ударную волну, которая может повалить лес и регистрируется по всему миру. Однако вовсе не обязательно, что на поверхности образуется крупный кратер. При входе в атмосферу все льды могут растаять. В таком случае отыщется лишь небольшое число фрагментов кометы — скорее всего, только редкие крупицы неледяных составляющих кометного ядра. Советский ученый Е. Соботович обнаружил большое количество микроскопических алмазов, разбросанных на месте падения Тунгусского метеорита. Такие алмазы уже находили прежде в упавших метеоритах, происхождение которых могло быть связано с кометами.
Если в ясную погоду с наступлением темноты внимательно, не отвлекаясь, понаблюдать за небом, то прямо над головой иногда удается заметить короткую вспышку метеора. В некоторые ночи, всегда приходящиеся: на одни и те же календарные даты, выпадает шанс полюбоваться метеорным потоком — своеобразным природным фейерверком, небесным шоу. Эти метеоры мельче горчичного зернышка, скорее оседающая пыль, чем падающие звезды. Входя в земную атмосферу, метеорные частицы разогреваются под действием трения, на мгновение ярко вспыхивают и погибают на высоте около 100 километров. Метеоры — это остатки разрушившихся комет. Старые кометы, многократно проходя вблизи Солнца и разогреваясь, подвергаются распаду, испарению и прекращают свое существование. Их остатки рассеиваются вдоль всей кометной орбиты. Там, где эта орбита пересекается с земной, нас поджидает метеорный рой. Какой-то своей частью рой всегда приходится на один и тот же участок земной орбиты, и поэтому метеорный поток каждый год наблюдается в один и тот же день. 30 июня 1908 года был день метеорного потока Бета-Таурид, связанного с кометой Энке. Возможно, первопричиной Тунгусского феномена послужил обломок именно этой кометы — фрагмент, который оказался значительно крупнее крошечных песчинок, вызывающих безобидные вспышки метеоров.
Кометы всегда были источниками страха и суеверного трепета. Их неожиданное появление бросало вызов представлению о неизменном и божественном упорядоченном Космосе. Казалось невероятным, что приковывающая к себе взгляд полоса молочно-белого пламени, которая каждую ночь восходит и заходит вместе со звездами, появилась безо всякой на то причины и не является каким-либо предзнаменованием. Так возникла идея, будто кометы — это предвестницы катастроф, знаки божественного гнева, что они предсказывают смерть правителей и гибель царств. Вавилоняне считали кометы небесными бородами. Греки говорили о струящихся волосах, арабы — о пылающих мечах. Во времена Птолемея кометы были тщательно классифицированы по форме на «лучи», «трубы», «кувшины» и тому подобное. Птолемей верил, что кометы приносят войны, жаркую погоду и «потрясение устоев». Некоторые средневековые изображения комет похожи на неопознанные летающие распятия. Андреас Целициус, глава лютеранский церкви и епископ Магдебургский, опубликовал в 1578 году «Теологическую памятку о новой комете», в которой проводилась мысль, будто «густой дым человеческих грехов, зловонный и отвратительный пред ликом Господа, поднимаясь каждый день, каждый час, каждое мгновение, постепенно становится настолько плотным, что образует кометы с вьющимися и заплетающимися волосами, которые в конце концов воспламеняются от огненного гнева Высшего Небесного Судии». На это ему возражали, что, будь кометы дымом грехов, они постоянно пылали бы в небесах.
Самая древняя запись о появлении кометы Галлея (она же самая древняя запись о кометах) обнаружена в китайской «Книге принца Хуай-нана», сопровождавшего правителя У в военном походе. Это был 1057 год до нашей эры. Сближением кометы Галлея с Землейв 66 году, вероятно, можно объяснить упоминание Иосифом Флавием меча, который целый год висел над Иерусалимом. В 1066 году норманны были свидетелями очередного возвращения кометы Галлея. Поскольку для них это стало предзнаменованием падения некоего королевства, комета в каком-то смысле ускорила вторжение в Англию Вильгельма Завоевателя. Появление кометы отражает своеобразная хроника того времени — гобелен из Байё. В 1301 году Джотто, один из основоположников современной реалистической живописи, засвидетельствовал другое появление кометы Галлея и запечатлел ее в сцене Рождества Христова. Великая комета 1466 года — еще один визит кометы Галлея — вызвала панику в христианской Европе; христиане опасались, что Господь, посылающий кометы, может быть на стороне турок, которые недавно захватили Константинополь.
Ведущие астрономы XVI–XVII веков были в восторге от комет, и даже Ньютон не остался к ним равнодушным. Келлер писал, что кометы носятся по космосу, «как рыбы по морю», но постепенно рассеиваются солнечным светом, поскольку кометные хвосты всегда направлены в сторону, противоположную Солнцу. Дэвид Юм, во многих отношениях бескомпромиссный рационалист, по-видимому, в шутку рассуждал о том, что кометы могут быть репродуктивными клетками — яйцами или спермой — планетных систем и что планеты вступают в своего рода межзвездное соитие. Ньютон, еще в студенчестве, до изобретения телескопа-рефлектора, провел немало бессонных ночей, пытаясь невооруженным глазом отыскать на небе кометы, и так усердствовал, что даже заболел от истощения. Вслед за Тихо Браге и Кеплером Ньютон пришел к выводу, что кометы, видимые с Земли, движутся не в атмосфере нашей планеты, как считал Аристотель и многие другие ученые, но находятся гораздо дальше Луны, хотя и ближе, чем Сатурн. Подобно планетам, кометы излучают отраженный солнечный свет, «и сильно ошибаются те, кто помещает их столь же далеко, как и неподвижные звезды; если бы это было так, кометы могли бы получать от нашего Солнца не больше света, чем планеты получают от неподвижных звезд». Ньютон показал, что кометы, подобно планетам, движутся по эллипсам: «Кометы — это особый вид планет, обращающихся вокруг Солнца по очень вытянутым орбитам». Эта демистификация, выразившаяся в предсказании регулярности кометных орбит, привела к тому, что друг Ньютона, Эдмунд Галлей, рассчитал в 1707 году, что кометы 1531, 1607 и 1682 годов были явлениями с 76-летним интервалом одной и той же кометы. И Галлей предрек ее возврат в 1758 году. Строго в указанное время комета возникла на небосводе и была, уже после смерти ученого, названа его именем. В истории человечества комета Галлея сыграла интересную роль, и, возможно, она станет первой небесной гостьей, к которой будет запущен космический зонд, во время ее очередного прилета в 1986 году.
Современные планетологи иногда утверждают, что столкновения с кометами могли дать существенный вклад в формирование планетных атмосфер. Например, вся вода, обнаруживаемая сегодня в атмосфере Марса, могла бы появиться в результате падения небольшой кометы. Ньютон писал, что вещество, составляющее хвосты комет, рассеивается в межпланетном пространстве и мало-помалу притягивается находящимися поблизости планетами. Он был убежден, что Земля постоянно теряет воду, которая «тратится в ходе произрастания и гниения и превращается в сухую почву… Жидкости, если они не поставляются извне, должны постоянно убывать и наконец совершенно исчезнуть». Похоже, Ньютон считал, что земные океаны имеют кометное происхождение и что жизнь возможна лишь потому, что на планету падает кометное вещество. В своих мистических размышлениях он идет еще дальше: «Более того, я подозреваю, что именно из комет в основном поступает дух, который в действительности является самой малой, но при этом самой сложной и самой полезной составляющей нашего воздуха и потому столь необходим для поддержания жизни и всего нашего существования».
Еще в 1868 году астроном Уильям Хёггинс обнаружил, что некоторые детали в спектрах кометы и природного горючего или нефтяного попутного газа совпадают. Так Хёггинс открыл в составе комет органическое вещество; в последующие годы в кометных хвостах была выявлена цианогруппа CN, состоящая из атомов углерода и азота, молекулярный фрагмент которой служит основой цианидов. Когда в 1910 году Земля должна была пройти сквозь хвост кометы Галлея, многие люди ударились в панику. Они упустили из виду, что хвост кометы невероятно разрежен и опасность отравления во много раз меньше той, которую уже в 1910 году создавали промышленные выбросы в крупных городах.
Разъяснения почти никого не успокоили. Вот, например, заголовки из сан-францисской «Кроникл» от 15 мая 1910 года: «Кометная газовая камера величиной с дом», «Муж исправляется из-за прилета кометы», «Нью-Йорк чудит из-за кометы». Лос-анджелесская «Экземинер» взяла шутливый тон: «Эй! Комета вас еще не нацианидила? <…> Все человечество ждет бесплатная газовая камера», «В ожидании „шумного веселья"», «Многие ощущают запах циана», «Жертва залезла на дерево, пробует позвонить на комету». В 1910 году люди спешили устроить вечеринку, покутить напоследок, пока отравление цианом не привело к концу света. Предприимчивые бизнесмены вразнос торговали противокометными пилюлями и газовыми масками. Последние явились мрачными провозвестниками сражений Первой мировой войны. Недоразумения, связанные с кометами, случаются и в наши дни. В 1957 году я был аспирантом в обсерватории Йеркиса при Чикагском университете. Однажды ночью, оставшись дежурить в одиночестве, я услышал настойчивый телефонный звонок. Голос, выдававший порядочную степень опьянения, произнес в трубке: «Дайте мне потолковать с аштрономом!» — «Чем могу быть полезен?» — «Да у нас тут, в Уилметте, в саду вечеринка, так вот в небе какая-то странная штуковина висит. И что забавно, если на нее прямо глядишь — исчезает. А если не смотришь — снова появляется». Наиболее чувствительная часть сетчатки находится в стороне от центра поля зрения. Тусклую звезду или другой объект можно заметить, немного отведя взгляд. Я знал, что на небе в то время была едва различимая невооруженным глазом комета Аренда-Роланда, которую недавно открыли. Поэтому я сообщил, что, вероятно, он видит комету. Последовала продолжительная пауза, а затем вопрос: «Чё еще за комета?» «Комета, — ответил я, — это такой снежный шар поперечником в одну милю». И вновь повисла пауза, еще более долгая, и на том конце потребовали: «Дай-ка мне поговорить с настоящим аштрономом!» Интересно, каких привидений будут страшиться политические лидеры, когда в 1986 году комета Галлея появится вновь, какие еще глупости выплеснутся на нас? Хотя планеты движутся вокруг Солнца по эллиптическим орбитам, эти орбиты не слишком вытянуты. На первый взгляд они вообще неотличимы от окружностей. Зато кометы, особенно долгопериодические, имеют отчетливо выраженные эллиптические орбиты. В сравнении с планетами — старожилами внутренних областей Солнечной системы — кометы здесь новички. Почему орбиты планет почти круговые и значительно отстоят одна от другой? Будь их орбиты сильно вытянутыми, пути планет пересекались бы и рано или поздно произошло бы столкновение. В ранний период истории Солнечной системы, вероятно, было множество планет, пребывающих на стадии формирования. Те, что двигались по эллиптическим пересекающимся орбитам, имели предрасположенность к столкновениям и саморазрушению. Тем же, чьи орбиты приближались к круговым, выпадало больше шансов вырасти и уцелеть. Орбиты современных планет — это пути выживших в коллизионном естественном отборе, спокойная зрелость Солнечной системы, одержавшей победу в эпоху катастрофических столкновений.
На самых окраинах Солнечной системы, во мраке далеко за пределами планетных орбит, расположено громадное сферическое облако из триллионов кометных ядер, которое обращается вокруг Солнца не быстрее участников автомобильной гонки «Индианаполис-500». Типичные кометы выглядят как гигантские кувыркающиеся в пространстве снежки поперечником около одного километра. Большинство из них никогда не нарушают условную границу, проведенную по орбите Плутона. Но иногда проходящая мимо звезда производит в кометном облаке гравитационные возмущения, и некоторые кометы оказываются на очень вытянутых эллиптических орбитах, ведущих в сторону Солнца. После сближения с Юпитером или Сатурном путь такой кометы может вновь измениться под воздействием их тяготения, и она станет возвращаться во внутренние области Солнечной системы примерно раз в столетие. Где-то между орбитами Юпитера и Марса комета нагревается и начинает испаряться. Вещество, истекающее из солнечной атмосферы — солнечный ветер, — уносит частицы пыли и льда прочь от кометы, начиная формировать ее хвост. Если бы Юпитер имел в поперечнике один метр, наша комета была бы меньше пылинки, однако хвост ее, когда он полностью разворачивается, сравним по размерам с расстоянием между планетами. Показываясь на земном небосводе, комета всякий раз сеет суеверный ужас в душах землян. Но в конце концов жителям Земли удалось понять, что это небесное тело, обретающееся далеко за пределами атмосферы, среди планет. Они вычислили его орбиту, и, возможно, уже недалек тот день, когда будет запущен небольшой космический аппарат для исследования гостьи, прибывшей к нам из царства звезд.
Рано или поздно кометы сталкиваются с планетами. Земля и ее спутница Луна должны подвергаться бомбардировке кометами и небольшими астероидами — мусором, оставшимся со времен образования Солнечной системы. Поскольку мелких объектов больше, вероятность столкновения с ними выше. Падение на Землю небольшого фрагмента кометы, подобного Тунгусскому метеориту, должно случаться примерно раз в тысячу лет. А вот столкновение с таким большим объектом, как комета Галлея, ядро которой, вероятно, достигает в поперечнике около двадцати километров, может произойти примерно раз в миллиард лет.
Когда небольшой ледяной обломок сталкивается с планетой или спутником, он не оставляет на поверхности крупных рубцов. Но если падающий объект относительно велик или состоит преимущественно из камня, то при столкновении происходит взрыв, после которого на поверхности возникает полусферическая воронка, называемая ударным кратером. При отсутствии процессов, стирающих или заносящих такие кратеры, они могут сохраняться миллиарды лет. На Луне практически нет эрозии, и поэтому мы видим, что ударных кратеров на ней гораздо больше, чем можно было бы ожидать, судя по немногочисленным остаткам кометно-астероидного населения, заполняющим в наши дни внутреннюю часть Солнечной системы. Лунная поверхность красноречиво свидетельствует об эпохе разрушения миров, закончившейся миллиарды лет назад.
Ударные кратеры встречаются не только на Луне. Во внутренней части Солнечной системы они обнаруживаются повсюду — от Меркурия, ближайшей к Солнцу планеты, до укрытой облаками Венеры и Марса с его крошечными спутниками Фобосом и Деймосом. Это так называемое семейство планет земного типа, более или менее похожих на Землю. У них твердая поверхность, железо-каменные недра, а плотность атмосферы меняется от почти полного вакуума до давления, в девяносто раз большего, чем на Земле. Они теснятся вокруг Солнца, источника света и тепла, как путники, жмущиеся к костру. Все планеты имеют возраст около 4,6 миллиарда лет. Подобно Луне, все они несут на себе следы эпохи катастрофических столкновений, произошедших в ранний период истории Солнечной системы. Выйдя за пределы орбиты Марса, мы попадаем в совершенно иные условия — в царство планет-гигантов или, как их еще называют, планет группы Юпитера. Это огромные миры, состоящие преимущественно из водорода и гелия с небольшими добавками богатых водородом газов, таких как метан, аммиак и водяные пары. Мы не видим у них твердой поверхности — только атмосферу и разноцветные облака. Это серьезные планеты, не шарики вроде Земли. Юпитер мог бы вместить в себя тысячи таких планет, как наша. Если комета или астероид упадет в атмосферу Юпитера, мы не увидим появления кратера — лишь кратковременный разрыв в облаках. И тем не менее мы знаем, что и во внешних областях Солнечной системы многие миллиарды лет происходили столкновения, поскольку Юпитер имеет более десятка спутников", пять из которых исследовались с близкого расстояния космическими аппаратами «Вояджер». И здесь мы снова находим свидетельства былых катаклизмов. Когда будет изучена вся Солнечная система, мы, вероятно, найдем следы катастрофических столкновений во всех мирах, от Меркурия до Плутона, а также на всех спутниках, кометах и астероидах.
На обращенной к нам стороне Луны в телескоп с Земли видно около 10 000 кратеров. Большинство из них расположены на древних лунных возвышенностях, а значит, возникли, когда подходил к концу период аккреции на Луну межпланетных обломков. В лунных морях — низменностях, которые вскоре после формирования Луны, вероятно, были затоплены лавой, скрывшей ранее существовавшие здесь кратеры, — насчитывается около тысячи кратеров поперечником больше километра. Таким образом, по очень грубой оценке, сейчас кратеры должны образовываться на Луне со скоростью 104 кратеров за 109 лет, то есть 105 лет на кратер — один кратер в сто тысяч лет. Несколько миллиардов лет назад межпланетного мусора могло быть больше, чем теперь. Так что нам, вероятно, придется ждать даже больше ста тысяч лет, чтобы увидеть, как на Луне образуется новый кратер. Поскольку площадь поверхности Земли больше, чем Луны, следует предположить, что столкновения, порождающие на поверхности нашей планеты кратеры диаметром около километра, будут происходить с интервалом около десяти тысяч лет. Возраст метеоритного кратера в Аризоне, имеющего примерно километр в поперечнике, составляет около 20–30 тысяч лет, что находится в согласии с нашими очень приближенными вычислениями.
Падение небольшой кометы или астероида на Луну способно породить мгновенную вспышку, достаточно яркую, чтобы ее было видно с Земли. Легко представить, как однажды ночью сто тысяч лет назад наши предки, праздно взиравшие на Луну, вдруг заметили над ее неосвещенной частью странное облако, неожиданно вспыхнувшее в солнечных лучах. Однако не стоит сильно рассчитывать на то, что подобное событие могло случиться в исторические времена. Шансы составляют один против ста. И тем не менее существует историческое свидетельство, которое, вероятно, описывает столкновение с Луной, замеченное с Земли невооруженным глазом. Вечером 25 июня 1178 года английские монахи сообщили о необычном событии, которое позднее, после того как очевидцы под присягой подтвердили правдивость своих слов, было занесено в хронику Гервасия Кентерберийского, пользующегося репутацией добросовестного летописца политических и культурных событий своего времени. В хронике значится:
Сразу после новолуния рога лунного серпа, как обычно в этой фазе, были обращены к востоку. Неожиданно верхний рог расщепился на два. Из промежутка между ними внезапно выскочил пылающий факел, который изрыгал огонь, горячие угли и искры.
Астрономы Деррал Малхолланд и Одайл Калам подсчитали, что в результате удара по лунной поверхности над ней может подняться облако пыли, по виду очень похожее на описание кентерберийских монахов.
Если столкновение произошло всего 800 лет назад, кратер должен оставаться видимым и поныне. Из-за отсутствия воздуха и воды эрозия на Луне протекает крайне медленно, так что даже маленькие кратеры возрастом несколько миллиардов лет сохранились относительно хорошо. По описанию Гервасия можно очень точно указать район на Луне, к которому относится свидетельство. Столкновения порождают на поверхности лучи — узкие длинные полосы тонкой пыли, выброшенной во время взрыва. Такие лучи сопутствуют самым молодым кратерам на Луне, например Аристарху, Копернику и Кеплеру. Но если лунные кратеры могут противостоять эрозии, то лучи, будучи исключительно тонкими, на это не способны. Со временем даже падающие на поверхность микрометеориты — тончайшая пыль, что оседает из космоса, — постепенно стирают и перекрывают лучи, приводя к их исчезновению. Таким образом, лучи являются отличительным признаком недавнего столкновения.
Специалист по метеоритам Джек Хартуанг обнаружил совсем свежий, очень молодой на вид кратер с хорошо различимой системой лучей в том самом районе Луны, на который указывали Кентерберийские монахи. Кратер назван Джордано Бруно в честь монаха-ученого, жившего в XVI веке и утверждавшего, что существует бесчисленное множество миров и многие из них обитаемы. За это и другие «преступления» он был сожжен заживо в 1600 году.
Подтверждение другого рода нашли Калам и Малхолланд. Когда объект врезается в Луну на высокой скорости, он заставляет ее слегка покачиваться. В конце концов эти колебания затухают, но не за такой короткий период, как восемь столетий. Такие вибрации можно фиксировать при помощи лазерных дальномеров. В ходе проекта «Аполлон» астронавты установили в нескольких точках Луны специальные зеркала, называемые лазерными ретрорефлекторами. Когда лазерный луч, направленный с Земли, падает на такое зеркало и возвращается, время его движения туда и обратно можно измерить с потрясающей точностью. Умножив это время на скорость света, мы со столь же высокой точностью определим расстояние до Луны в момент измерения. Подобные измерения, проводившиеся на протяжении нескольких лет, выявили, что Луна покачивается с периодом около трех лет и амплитудой примерно три метра, что не противоречит гипотезе об образовании кратера Джордано Бруно менее тысячи лет назад.
Все эти доказательства являются косвенными и получены путем умозаключений. Как я уже сказал, шансы на то, что подобное событие могло произойти в исторические времена, очень малы. Однако приведенные свидетельства по крайней мере заставляют задуматься. Подобно Тунгусскому метеориту и Аризонскому кратеру, они подтверждают, что крупные, но некатастрофические столкновения происходили не только в ранний период истории Солнечной системы. А тот факт, что лишь несколько лунных кратеров имеют развитые системы лучей, указывает на то, что даже поверхность Луны до некоторой степени подвержена эрозии. Изучая, как кратеры накладываются друг на друга и на другие элементы лунной стратиграфии, можно реконструировать последовательность столкновений и затоплений, в ряду которых образование кратера Бруно, вероятно, является самым последним событием.
Земля находится очень близко к Луне. Если Луна изрыта ударными кратерами, как же Земля избежала подобной участи? Почему метеоритные кратеры такая редкость? Может быть, кометы и астероиды избегают падать на населенные планеты? Вряд ли они столь снисходительны. Единственно возможное объяснение состоит в том, что ударные кратеры образуются примерно с одинаковой частотой на нашей планете и на ее спутнике, однако на лишенной воздуха и воды Луне они сохраняются практически вечно, тогда как на Земле эрозия медленно стирает их или скрывает под осадочными породами. Текущая вода, переносимый ветром песок и горообразование действуют медленно. Но на протяжении миллионов и миллиардов лет они способны полностью сгладить даже очень крупные рубцы.
Поверхность любого спутника или планеты подвергается внешним воздействиям, таким, например, как космические столкновения, и внутренним, скажем, землетрясениям; это могут быть кратковременные катастрофы, подобные извержениям вулканов, и мучительно медленно протекающие процессы, как, например, эрозия под действием переносимого ветром песка. Не существует универсального ответа на вопрос о том, какие из воздействий доминируют — внешние или внутренние, редкие, но разрушительные события или постоянные и малозаметные явления. На Луне господствуют внешние катастрофические события, на Земле — внутренние медленно протекающие процессы. Марс представляет собой промежуточный случай.
Между орбитами Марса и Юпитера находятся бесчисленные астероиды, крошечные планеты земного типа. Самые крупные в поперечнике достигают нескольких сотен километров. Многие имеют вытянутую форму и кувыркаются, двигаясь в пространстве. Похоже, что в некоторых случаях два или более астероида имеют взаимосвязанные орбиты. Столкновения астероидов происходят часто, и отколовшиеся куски могут совершенно случайно встретиться с Землей и упасть на ее поверхность в виде метеоритов. Так что в экспозициях и запасниках наших музеев хранятся фрагменты далеких миров. Пояс астероидов — это гигантская мельница, перетирающая обломки в пыль. Наиболее крупные осколки астероидов наряду с кометами ответственны за появление на поверхности планет свежих кратеров. Возможно, пояс астероидов возник на том месте, где из-за приливного воздействия находящегося неподалеку гигантского Юпитера не смогла образоваться планета; или, быть может, это обломки взорвавшейся планеты. Последнее, правда, кажется невероятным, поскольку ни один ученый на Земле не знает, как может взорваться планета. И пожалуй, это не так уж плохо.
Кольца Сатурна имеют определенное сходство с поясом астероидов: вокруг планеты вращаются триллионы крошечных ледяных спутников. Они могут быть обломками, которым тяготение Сатурна не позволило объединиться и образовать ближайший к планете крупный спутник, или остатками спутника, находившегося слишком близко к Сатурну и разорванного приливными силами. По другой гипотезе, может иметь место динамическое равновесие между веществом, выбрасываемым со спутника Сатурна Титана, и веществом, падающим в атмосферу планеты. Юпитер и Уран также имеют системы колец, открытые лишь недавно и почти невидимые с Земли. Существуют ли кольца у Нептуна — актуальный вопрос для современных планетологов. Вероятно, кольца являются неизменным атрибутом планет типа Юпитера.
Психиатр Иммануил Великовский в популярной книжке «Миры в столкновении», вышедшей в 1950 году, рассказывает о грандиозных коллизиях, которые в недавнее время пережили планеты от Сатурна до Венеры. Он предположил, что объект планетной массы, называемый им кометой, был каким-то образом исторгнут системой Юпитера. Около 3500 лет назад этот объект попал во внутренние области Солнечной системы и испытал неоднократные столкновения с Землей и Марсом. Одно из таких случайных столкновений заставило расступиться Красное море, позволив Моисею вывести сынов Израилевых из земли фараона, другое остановило вращение планеты по велению Иисуса. По утверждению Великовского, эти столкновения также вызвали мощные извержения вулканов и наводнения. Он полагает, что комета после всей этой сложной партии межпланетного бильярда вышла на стабильную, почти круговую орбиту, став планетой Венерой, которой, если верить Великовскому, до того вообще не существовало.
Мне уже приходилось объяснять, что все эти представления почти полностью ошибочны. Астрономы не отрицают саму возможность крупных столкновений, но не допускают, чтобы такие столкновения могли иметь место в недавнем прошлом. Ни в какой модели Солнечной системы нельзя показать размеры планет в одном масштабе с их орбитами, поскольку планеты будет почти невозможно разглядеть, настолько они окажутся малы.
Если представить планеты в правильном масштабе — в виде пылинок, то мы сразу поймем, что вероятность столкновения отдельно взятой кометы с Землей на отрезке в несколько тысяч лет чрезвычайно мала. И кроме того, Венера имеет каменно-металлический состав и бедна водородом, тогда как Юпитер — откуда, по мысли Великовского, она произошла — почти полностью состоит из водорода. Не существует таких источников энергии, которые могли бы выбросить с Юпитера комету или планету. Если даже такой объект и пройдет мимо Земли, он не сможет «остановить» ее вращение, а уж тем более вновь заставить ее вращаться со скоростью один оборот за 24 часа. Нет никаких геологических свидетельств повышенной частоты вулканических извержений или наводнений 3500 лет назад. Венера упоминается в месопотамских надписях, сделанных раньше, чем, согласно Великовскому, она превратилась из кометы в планету. Совершенно невероятно, чтобы объект с такой сильно вытянутой орбитой мог быстро перейти на почти идеально круговую орбиту современной Венеры. Возражений наберется еще предостаточно.
Множество гипотез, предложенных как учеными, так и дилетантами, оказались ошибочными. Но наука сама исправляет свои ошибки. Чтобы добиться признания, все новые идеи должны пройти через суровую проверку доказательств. В случае с Великовским хуже всего не то, что его гипотезы ошибочны или находятся в противоречии с надежно установленными фактами, а то, что некоторые люди, считающие себя учеными, пытались запретить его работы. Наука создается свободными исследованиями и служит им: любая гипотеза, сколь бы странной она ни была, достойна того, чтобы быть рассмотренной по существу. Запрет неудобных идей — обычное дело в религии или политике, но этот путь не ведетк знанию, ему нет места в научном поиске. Нам не дано знать, кому откроются новые фундаментальные истины. Венера имеет почти земные массу, размер и плотность. Как ближайшая к нам планета, она столетиями считалась сестрой Земли. Какова же в действительности планета-сестра? Может ли на ней царить благодатное вечное лето, чуть более теплое, чем на Земле, ведь она немного ближе к Солнцу? Есть ли там ударные кратеры, или все они уничтожены эрозией? Существуют ли вулканы? Горы? Океаны? Жизнь?
Первым, кто взглянул на Венеру в телескоп, стал Галилей в 1609 году. Он увидел диск, на котором не было абсолютно никаких деталей. Галилей обнаружил, что Венера меняет фазы подобно Луне — от тонкого серпа до полного диска, — и причина этих изменений та же: иногда мы видим в основном ночную сторону Венеры, а иногда большей частью дневную. Это открытие, между прочим, подкрепляло теорию о том, что Земля движется вокруг Солнца, а не наоборот. Размеры телескопов росли, разрешение (способность различать тонкие детали) увеличивалось, их систематически направляли на Венеру. Однако они показывали не больше, чем смог увидеть Галилей. Венера была окутана толстым слоем непрозрачных облаков. Когда мы смотрим на планету, сияющую в утреннем или вечернем небе, мы видим солнечный свет, отраженный облаками Венеры. Но в течение столетий после их открытия химический состав облаков оставался совершенно неизвестным.
Невозможность что-либо разглядеть на Венере привела некоторых ученых к странному выводу, что ее поверхность представляет собой болото, какое было на Земле в каменноугольный период. Аргументация — если это можно так назвать — была примерно такова:
— Я ничего не могу увидеть на Венере.
— Почему?
— Потому что она полностью скрыта облаками.
— Из чего состоят эти облака?
— Из воды, конечно.
— А почему облака на Венере толще, чем на Земле?
— Потому что там больше воды.
— Но если больше воды в облаках, то и на поверхности ее должно быть больше. Что может представлять собой такая влажная поверхность?
— Болото.
А раз есть болота, то почему на Венере не быть цикадам, стрекозам и, возможно, даже динозаврам? Наблюдения: на Венере абсолютно ничего не видно. Вывод: на ней должна быть развитая жизнь. Безликие облака Венеры отражали лишь наши надежды и ожидания. Мы живые, и мы заключаем, что жизнь должна быть повсеместно. Но только тщательный сбор и анализ доказательств ответит на вопрос, обитаем ли данный мир. Венера решила не делать уступок нашим предубеждениям.
Первый реальный ключ к разгадке венерианской природы дали эксперименты со стеклянной призмой и дифракционной решеткой — плоской поверхностью, на которую через равные интервалы нанесены тонкие параллельные линии. Когда интенсивный поток обычного белого света проходит сквозь узкую щель и затем через призму или решетку, он разделяется по цветам радуги, образуя спектр. Спектр охватывает цвета — фиолетовый, синий, зеленый, желтый, оранжевый, красный — в направлении от высокой частоты к низкой. Он называется спектром видимого света, поскольку все эти цвета доступны нашему зрению. Но свет — это нечто большее, нежели тот маленький участок спектра, который мы воспринимаем. В высоких частотах, за пределами фиолетового цвета, лежит область ультрафиолетового излучения. Это совершенно реальный свет, несущий смерть микробам. Он невидим для нас, но его легко улавливают шмели и фотоэлементы. За ультрафиолетом находится рентгеновская область спектра, а еще дальше — гамма-излучение. В области низких частот, за красным цветом, располагается инфракрасный участок спектра. Он был впервые обнаружен, когда в темную для нашего глаза область спектра за красным краем поместили чувствительный тепловой датчик. Температура возросла. Значит, свет все-таки попал на термометр, хотя и был невидим для наших глаз. Гремучие змеи и полупроводники со специальными примесями прекрасно чувствуют инфракрасное излучение. За инфракрасным светом идет огромный спектральный диапазон радиоволн. Все это — от гамма-излучения до радиоволн — разные, но одинаково важные виды света. Все они используются в астрономии. Но из-за ограниченных способностей нашего зрения мы отдаем предпочтение крошечному радужному диапазону, который зовем спектром видимого света.
Спектр электромагнитного излучения от самых коротких волн (гамма-излучение) до самых длинных (радиоизлучение).
Длину волны измеряют в нанометрах (нм), микрометрах (микронах, мкм), сантиметрах (см) и метрах (м).

 

В 1844 году философ Огюст Конт подыскивал пример такого знания, которое навсегда останется скрытым от нас. Он остановился на химическом составе далеких звезд и планет. Нам никогда не посетить их, полагал он, и, не имея на руках образцов вещества, мы будем навсегда лишены возможности узнать его состав. Но всего через три года после смерти Конта выяснилось, что спектр можно использовать для определения химического состава удаленных объектов. Молекулы и химические элементы поглощают свет различных частот (или цветов) — иногда в видимой части спектра, иногда в других его областях. В спектре планетной атмосферы одиночная темная линия соответствует узкому промежутку, в котором свет отсутствует из-за того, что солнечное излучение, проходя сквозь воздух другого мира, избирательно поглощается им. Каждая такая линия порождается определенным видом молекул или атомов. Каждое вещество оставляет свой характерный спектральный «автограф». Состав газовой оболочки Венеры можно определить с Земли, с расстояния 60 миллионов километров. Мы можем предсказать химический состав Солнца (где впервые был обнаружен гелий, названный по имени греческого бога солнца Гелиоса), магнитных звезд типа А, богатых европием, далеких галактик, исследуемых по совокупному свету миллиардов звезд. Астрономическая спектроскопия — это почти магическая техника. Она продолжает удивлять меня. Огюст Конт выбрал на редкость неудачный пример.
Если бы Венера и впрямь сочилась влагой, в ее спектре должны были бы без труда обнаружиться линии водяного пара. Однако спектроскопические исследования, предпринятые около 1920 года в обсерватории Маунт-Вилсон, не выявили ни следа, ни даже намека на присутствие водяного пара над облаками Венеры, что заставляет предположить существование иссушенной пустынной тверди, укутанной облаками тончайшей силикатной пыли. Дальнейшие изыскания обнаружили в атмосфере огромное количество углекислоты, наведя некоторых ученых на мысль, что вся вода на планете связана углеводородами, отчего и образовалась углекислота, а значит, поверхность Венеры представляет собой огромное нефтяное поле, море нефти, покрывающее всю планету. Другие заключили, что водяного пара над облаками нет потому, что облака эти очень холодные и вся вода конденсируется в мельчайшие капли, которым свойствен иной набор спектральных линий, чем водяному пару. Они высказали предположение, что планета полностью залита водой — за исключением, возможно, случайных островов, покрытых слоем известняка, подобно скалам Дувра. Но из-за огромного количества углекислоты в атмосфере море не может состоять из обычной воды; законы физической химии говорят, что она должна быть газированной. И получалось, что Венера — огромный океан сельтерской воды.
Первый намек на истинное положение дел удалось получить не анализируя спектры в видимой и ближней инфракрасной области, а благодаря исследованиям в радиодиапазоне. Радиотелескоп работает скорее как экспонометр, а не как фотоаппарат. Вы направляете его на довольно обширный участок неба, и он регистрирует, сколько энергии приходит оттуда на Землю на определенной радиочастоте. Мы уже привыкли к радиосигналам, передаваемым некоторыми разновидностями разумной жизни, а именно теми, что строят теле- и радиостанции. Однако существует множество других причин, по которым естественные объекты могут испускать радиоволны. Одна из них — нагрев. И когда в 1956 году один из первых радиотелескопов был направлен в сторону Венеры, обнаружилось, что она испускает радиоволны, как будто нагрета до чрезвычайно высокой температуры. Но окончательное подтверждение того, что поверхность Венеры невероятно горяча, пришло от советских космических аппаратов серии «Венера», которые впервые проникли сквозь облачный покров и опустились на загадочную и недоступную поверхность ближайшей планеты. Оказалось, что Венера страшно раскалена. Никаких болот, никаких нефтяных полей, никаких океанов газировки. При нехватке данных так легко допустить ошибку…
Когда я здороваюсь с приятельницей, я вижу ее благодаря отраженному свету Солнца или, например, лампы накаливания. Лучи света рассеиваются на ней и попадают в мой глаз. Однако древние, даже такие великие мыслители, как Евклид, считали, что мы видим посредством особых, испускаемых глазами лучей, которые как бы ощупывают наблюдаемые объекты, активно взаимодействуют с ними. Это естественное представление, и оно продолжает бытовать, хотя и не согласуется с невидимостью объектов в темной комнате. Сегодня мы соединяем лазер с фотоэлементом или радиопередатчик с радиотелескопом и таким образом можем при помощи света активно взаимодействовать с удаленными объектами. В радарной астрономии радиоволны испускаются находящимся на Земле радиотелескопом и отражаются обратно. На многих длинах волн облака и атмосфера Венеры совершенно прозрачны для радиоизлучения. В тех местах, где поверхность изобилует неровностями, излучение поглощается или рассеивается в разные стороны. Такие участки выглядят для радиоволн темными. Слежение за перемещением деталей поверхности в ходе вращения Венеры позволило впервые надежно определить продолжительность суток на планете — время, в течение которого Венера совершает один оборот вокруг своей оси. Выяснилось, что на один оборот относительно звезд Венера затрачивает 243 земных дня, причем вращается она в направлении, обратном направлению вращения всех планет внутренней части Солнечной системы. В результате Солнце здесь встает на западе и садится на востоке, а между двумя восходами минует 118 земных суток. А еще в моменты максимального сближения с Землей Венера всегда поворачивается к нам почти в точности одной и той же стороной своей поверхности. Хотя к такому, синхронизированному с Землей режиму вращения Венеру привело тяготение нашей планеты, это произошло не вдруг. Да и не может возраст Венеры насчитывать каких-то несколько тысяч лет, он должен быть таким же, как и у всех остальных объектов во внутренней части Солнечной системы.
Радарные изображения Венеры были получены как наземными радиотелескопами, так и с космического аппарата «Пионер-Венера», находившегося на орбите вокруг планеты. На них отчетливо видны признаки ударных кратеров. Кратеров — не слишком больших и не слишком мелких — на Венере как раз столько, сколько насчитывается на лунных возвышенностях, — еще одно подтверждение того, что планета очень стара. Но венерианские кратеры совсем неглубокие, как будто под влиянием высокой температуры скалы на протяжении длительных периодов времени растекаются, подобно маслу или пластилину, постепенно сглаживая рельеф. Здесь есть огромные плоскогорья, вдвое выше Тибетского плато, громадные рифтовые долины, возможно, гигантские вулканы и горы, сравнимые по высоте с Эверестом. Теперь мы можем видеть этот мир, прежде полностью скрытый от нас облаками, — его детали впервые исследованы посредством радара и космических аппаратов.
Температура на поверхности Венеры, согласно радиоастрономическим наблюдениям, подтвержденным прямыми измерениями с космических аппаратов, составляет около 480 °C — больше, чем в самой горячей кухонной печи. Атмосферное давление на поверхности достигает 90 атмосфер, то есть в 90 раз превосходит земное и соответствует давлению воды на глубине 1 километр. Чтобы достаточно долго продержаться на Венере, космический аппарат должен быть устроен по образцу глубоководного батискафа и при этом еще хорошо охлаждаться.
Более десятка космических аппаратов Советского Союза и Соединенных Штатов вошли в плотную атмосферу Венеры и проникли сквозь облака; некоторые из них смогли просуществовать на поверхности около часа. Два советских аппарата «Венера» передали оттуда изображения. Давайте пройдем по следам пионерских миссий и посетим иной мир.
В обычном видимом свете можно наблюдать бледно-желтые облака Венеры, но, как впервые отметил Галилей, в них практически не на чем задержаться взгляду. Однако камера, работающая в ультрафиолетовом диапазоне, позволяет рассмотреть в верхних слоях атмосферы изящную, сложную систему вихревых ветров, дующих со скоростью около 100 метров в секунду. На 96 процентов атмосфера Венеры состоит из углекислоты. Имеются незначительные следы азота, водяного пара, аргона, угарного и других газов, но содержание углеводородов и углеводов не превышает 0,1 части на миллион. Облака Венеры, как выяснилось, представляют собой в основном концентрированный раствор серной кислоты. Присутствуют также небольшие количества соляной и плавиковой кислот. Даже верхние, холодные облака Венеры оказались совершенно отвратительным местом.
Над видимым облачным слоем, на высоте около 70 километров от поверхности, всегда висит дымка из мельчайших частиц. На уровне 60 километров мы ныряем в облака, чтобы очутиться в окружении капелек концентрированной серной кислоты. По мере погружения они становятся крупнее. В нижних слоях атмосферы имеются следы едкого газа — диоксида серы (SO2). Поднимаясь выше облаков, он испытывает на себе разлагающее действие ультрафиолетового излучения Солнца и вступает в реакцию с водой, образуя серную кислоту, которая конденсируется в мельчайшие капли, оседает и на небольших высотах благодаря нагреванию вновь распадается на SO2 и воду, завершая круговорот. По всей Венере постоянно идут сернокислые дожди, но ни одна капля никогда не достигает поверхности планеты.
Желтый серный туман продолжается до высоты 45 километров над поверхностью, достигнув которой, мы оказываемся в плотной, но кристально прозрачной среде. Однако атмосферное давление настолько велико, что разглядеть поверхность невозможно. Солнечный свет, рассеиваемый молекулами атмосферы, полностью скрывает ее из виду. Здесь нет пыли, нет облаков, просто газовая оболочка планеты становится осязаемо плотной. Сквозь лежащие выше облака проникает довольно много солнечного света, не меньше, чем на Земле в пасмурный день.
Обжигающая жара, разрушительное давление, ядовитые газы и жуткий красноватый свет делают Венеру больше похожей не на богиню любви, а на воплощение преисподней. Насколько мы можем судить, в некоторых местах поверхность покрыта беспорядочно разбросанными, немного размягченными каменными обломками — враждебный, пустынный ландшафт, который изредка разнообразят разъеденные останки брошенных космических кораблей с далекой планеты, совершенно неразличимые сквозь толстую, облачную, ядовитую атмосферу.
Венера дает нам пример всепланетной катастрофы. Теперь уже понятно, что высокая температура поверхности является следствием мощного парникового эффекта. Солнечный свет проходит сквозь атмосферу и облака Венеры, которые полупрозрачны для видимого света, и достигает поверхности. Нагретая поверхность пытается посредством излучения отдать теплоту космосу. Поскольку Венера намного холоднее Солнца, она испускает излучение преимущественно в инфракрасном, а не в видимом диапазоне спектра. Однако углекислый газ и водяной пар в атмосфере Венеры почти идеально поглощают инфракрасное излучение, солнечное тепло оказывается в ловушке, и температура поверхности растет — пока та небольшая доля инфракрасного излучения, которой удается просочиться сквозь мощную атмосферу, не уравновесит солнечный свет, поглощаемый нижними слоями атмосферы и поверхностью.
Соседний мир явился нам угнетающе неприглядным. Но мы вновь вернемся на Венеру. Она все же по-своему притягательна. В конце концов, герои греческих и скандинавских мифов не чурались визитов в преисподнюю. Нам многое предстоит узнать о нашей планете, которая по сравнению с этой геенной огненной может считаться раем.
Египетский сфинкс, получеловек-полулев, был сооружен более 5500 лет назад. Его лик когда-то был четким, теперь же черты сглажены ветром, который тысячелетиями несет песок из пустыни, и редкими дождями. В Нью-Йорке есть привезенный из Египта обелиск под названием «игла Клеопатры». Всего за сто лет пребывания в Центральном парке надписи на нем почти исчезли из-за смога и промышленных выбросов — из-за химической эрозии, подобной той, что действует в атмосфере Венеры. На Земле эрозия мало-помалу стирает информацию, но поскольку она действует постепенно — капля за каплей, песчинка за песчинкой, — этот процесс трудно заметить. Крупные образования, такие как горные массивы, сохраняются десятки миллионов лет; меньшие по размерам ударные кратеры — сотни тысяч, а крупные искусственные сооружения — только несколько тысяч. Вдобавок к медленной и равномерной эрозии разрушению способствуют катастрофы большего или меньшего масштаба. У Сфинкса нет носа. Какие-то вандалы отбили его снарядом (одни говорят, это были турки-мамелюки, другие — наполеоновские солдаты).
На Венере, на Земле и везде в Солнечной системе есть следы катастрофических разрушений, полустертые или скрытые медленными, более равномерными процессами: на Земле, например, атмосферные осадки, собираясь в ручьи и реки, создают громадные аллювиальные бассейны; на Марсе есть русла древних рек, возможно, выходящих из-под поверхности; на Ио, спутнике Юпитера, существует что-то вроде широких каналов, проложенных потоками жидкой серы. На Земле, в верхних слоях венерианской атмосферы, на Юпитере развиваются мощные атмосферные процессы. Песчаные бури бушуют и на Земле, и на Марсе; молнии бывают на Юпитере, на Венере и на нашей планете. Вулканы выбрасывают вещество в атмосферу на Земле и на Ио. Внутренние геологические процессы медленно деформируют поверхности Венеры, Марса, Ганимеда, Европы (последние два — спутники Юпитера. — Ред.) и, конечно, Земли. Ледники, известные своей неспешностью, производят масштабные преобразования ландшафтов на Земле и, возможно, на Марсе. Эти процессы не обязательно протекают равномерно во времени. Когда-то большая часть европейского континента скрывалась подо льдом. Несколько миллионов лет назад то место, где сейчас находится город Чикаго, было погребено под трехкилометровой толщей льда. На Марсе и повсюду в Солнечной системе мы находим образования, которые не могут возникнуть в наши дни, рельефы, сформировавшиеся сотни миллионов, миллиарды лет назад, когда климат на планетах, вероятно, был совершенно иным.
Существует еще один фактор, способный менять ландшафт и климат Земли, — это разумная жизнь, которой под силу существенно преображать окружающую среду. Как и на Венере, на нашей планете работает парниковый эффект, создаваемый углекислым газом и водяным паром. Если бы не он, глобальная температура опустилась бы ниже точки замерзания воды. Благодаря ему океаны остаются жидкими и на Земле возможна жизнь. Небольшой парниковый эффект — хорошая штука. Углекислоты на Земле практически столько же, сколько на Венере, — ее хватило бы для создания давления 90 атмосфер; но эта углекислота связана в земной коре в форме известняка и других карбонатов, а не находится в атмосфере. Если Земля переместится немного ближе к Солнцу, температура слегка вырастет. Это вызовет выделение части СO2 из близких к поверхности пород и усилит парниковый эффект, обусловив дальнейший нагрев поверхности. Карбонаты на горячей поверхности будут выделять все больше СO2, и не исключено, что парниковый эффект пойдет вразнос. Именно это, по-видимому, и произошло в ранний период истории Венеры из-за ее близости к Солнцу. Венера являет собой предупреждение о катастрофе, которая может случиться с планетой, довольно похожей на нашу.
Основными источниками энергии для современной индустриальной цивилизации служат так называемые ископаемые топлива. Мы сжигаем дерево и нефть, уголь и природный газ и при этом выбрасываем в воздух продукты сгорания, преимущественно СO2. В результате содержание углекислоты в земной атмосфере значительно увеличивается. Нам следует быть осторожными, чтобы не допустить неуправляемого парникового эффекта. Глобальный подъем температуры всего на один-два градуса может иметь катастрофические последствия. Сжигая уголь, нефть, бензин, мы также выбрасываем в атмосферу серную кислоту. И у нас уже сейчас, как и на Венере, в стратосферных слоях витает легкая дымка из капелек серной кислоты. Крупнейшие наши города загрязнены ядовитыми молекулами. Мы не понимаем, к каким долгосрочным последствиям приведет нынешний образ действий.
Между тем нам уже доводилось изменять климат в противоположном направлении. Сотни тысяч лет подряд люди выжигали и вырубали леса, а выпас домашних животных разрушал луга. Подсечно-огневое земледелие, промышленное уничтожение тропических лесов, вытаптывание пастбищ и сегодня идут полным ходом. Но леса темнее лугов, а луга темнее пустынь. Как следствие, количество солнечного света, поглощаемого поверхностью, уменьшается, так что, изменяя характер землепользования, мы меняем поверхностную температуру нашей планеты. Может ли это похолодание увеличить размер ледяной полярной шапки, которая, будучи очень светлой, станет отражать еще больше солнечного излучения и тем самым вызовет дальнейшее охлаждение Земли, пустив вразнос эффект альбедо?
Замечательная планета Земля — это единственный наш дом. Венера слишком горячая. Марс слишком холодный. А Земля в буквальном смысле рай для людей. В конце концов, именно здесь нас породила эволюция. Но благоприятный нам климат может оказаться неустойчивым. Мы ввергаем нашу бедную планету в серьезные испытания. Существует ли опасность превратить земную окружающую среду в венерианское пекло или ледяной ад Марса? Ответ простой: никто этого не знает. Мы только-только приступили к глобальным климатическим исследованиям и сравнению Земли с другими мирами. Изыскания эти финансируются скудно и с неохотой. В своем неведении мы продолжаем изменять и загрязнять атмосферу, делать поверхность Земли более светлой, забывая о том, что долгосрочные последствия по большому счету неизвестны.
Несколько миллионов лет назад, когда появились первые человеческие существа, Земля уже была зрелым миром, прожившим 4,6 миллиарда лет со времени своей богатой катастрофами юности. Но именно мы, люди, стали теперь новым и, возможно, решающим фактором. Наша цивилизация и наша технология дали нам силу для воздействия на климат. Как мы воспользуемся этой силой? Станем ли мы мириться с невежеством и самодовольством в делах, от которых зависит все человечество? Предпочтем ли мы сиюминутные выгоды благополучию Земли? Или мы научимся мыслить в больших масштабах времени и ради наших детей и внуков поймем и защитим сложную систему жизнеобеспечения нашей планеты? Земля — это крошечный и хрупкий мир. Он нуждается в заботе.
Назад: Глава III. Гармония миров
Дальше: Глава V. Блюз красной планеты