Глава 16
Было ли у Вселенной начало?
Источник, от которого берут начало все творения, <...> он, который обозревает их все с высочайших небес, он знает, или, быть может, даже он не знает.
Риг-веда
Проблема космического яйца
Древние мифы о творении демонстрируют поразительное разнообразие, но на самом фундаментальном уровне они сводятся к одному из двух основных вариантов: либо Вселенная была создана конечное время назад, либо она существовала вечно.
Вот один из сценариев, взятый из священной индуистской книги "Упанишады":
"В начале этот [мир] был несуществующим. Он стал существующим. Он превратился в яйцо. Яйцо лежало год. Затем оно раскрылось... И прямо из него родился Адитья-Солнце. Его рождение встретили возгласом "Ура!" все существа и все объекты желания".
Эта идея выглядит довольно простой, но, к сожалению, имеет серьезный недостаток, который присущ и всем остальным историям творения. Древние хорошо понимали эту проблему; индийский поэт Джинасена писал в IX веке:
"Некоторые глупцы утверждают, что мир создан Творцом. Учение о сотворении мира противоречит здравому смыслу и должно быть отвергнуто.
Если Бог создал мир, где он был до творения?
<...>
Как мог Бог создать мир без всяких исходных материалов? Если вы скажете, что он сначала сделал их, а уже потом мир, вы приходите к бесконечной регрессии.
<...>
Таким образом, учение о том, что мир был создан Богом, вовсе не имеет никакого смысла...
Знай, что мир не сотворен, как и само время, без начала и конца... Несотворимый и неразрушимый, он продолжает существовать, подчиняясь законам своей собственной природы..."
Эта критика в равной мере приложима к любым сценариям возникновения космоса — будь то сотворение Богом, как в истории с космическим яйцом, или "естественное" творение, как в модели Большого взрыва современной космологии.
Согласно теории Большого взрыва, вся материя вокруг нас появилась из раскаленного космического огненного шара около 14 миллиардов лет назад. Но откуда появился огненный шар? Теория инфляции показала, что расширяющийся огненный шар может возникнуть из крошечного зародыша ложного вакуума. Но все равно остается вопрос: откуда взялся этот первоначальный зародыш? Что происходило до инфляции?
В большинстве своем космологи не спешат браться за эту щекотливую тему. И действительно, похоже, что здесь не может быть удовлетворительного ответа. Каков бы ни был ответ, всегда можно спросить: "А что было перед этим?" Это и есть "бесконечная регрессия", о которой упоминает Джинасена. Однако в 1980-х годах, когда был разработан инфляционный сценарий, похоже, появилась привлекательная альтернатива.
Вселенная вечной инфляции состоит из расширяющегося "моря" ложного вакуума, в котором постоянно зарождаются "островные вселенные", подобные нашей. Таким образом, инфляция — это никогда не прекращающийся процесс. Он закончился в нашей собственной островной вселенной, но будет неограниченно продолжаться в других отдаленных областях. Однако если инфляция бесконечна в будущем, то, вероятно, ей не нужно и начало в прошлом. Получается вечно инфлирующая вселенная без начала и конца, что исключает неразрешимые проблемы, связанные с происхождением космоса. Эта картина напоминает космологическую теорию стационарной вселенной 1940-50-х годов. Некоторые люди находили ее весьма привлекательной.
Циклическая Вселенная
Помимо стационарного состояния есть еще один способ сделать Вселенную вечной. И вновь индусы придумали его в далеком прошлом. Бесконечный цикл создания и уничтожения символизируется танцем Шивы. "Он приходит в состояние экстаза и, танцуя, посылает сквозь инертную материю пульсирующие волны пробуждающих звуков". Вселенная оживает, но потом "на исходе времен, продолжая танцевать, он разрушает все формы и имена в огне и делает передышку".
Параллельная идея в научной космологии — это представление о пульсирующей вселенной, которая проходит через циклы расширения и сжатия. В 1930-х годах она короткое время была популярна, но потом вышла из моды из-за очевидного противоречия со вторым началом термодинамики. Второе начало требует, чтобы энтропия, которая служит мерой беспорядка, возрастала с каждым циклом космической эволюции. Если Вселенная уже прошла через бесконечное число циклов, она должна достичь состояния с максимальной энтропией — термодинамического равновесия. Однако очевидно, что мы не находимся в таком состоянии. Это проблема "тепловой смерти", о которой я упоминал раньше.
Идея пульсирующей вселенной была отброшена больше чем полстолетия назад, но в 2002 году возродилась в новом образе благодаря Полу Стейнхардту и Нейлу Туроку из Кембриджа. Как и в ранних моделях, они предположили, что история Вселенной состоит из бесконечно повторяющихся циклов расширения и сжатия. Каждый цикл начинается с горячего расширяющегося огненного шара. Он расширяется и остывает, образуются галактики, и вскоре после этого во Вселенной начинает доминировать энергия вакуума. С этого момента Вселенная начинает расширяться экспоненциально, удваивая свои размеры примерно каждые 10 миллиардов лет. Спустя триллионы лет этой сверхмедленной инфляции Вселенная становится чрезвычайно однородной, изотропной и плоской. Наконец расширение замедляется и затем сменяется сжатием. Вселенная схлопывается и сразу же восстанавливается, давая старт новому циклу. Часть энергии, выделившейся при коллапсе, идет на создание горячего огненного шара вещества.
Стейнхардт и Турок доказывали, что в их сценарии не возникает проблемы начала. Вселенная всегда проходит один и тот же цикл, так что никакого начала попросту нет. Проблему тепловой смерти также удается обойти, поскольку степень расширения в каждом цикле больше, чем степень сжатия, так что объем Вселенной с каждым циклом возрастает. Энтропия нашей наблюдаемой области сегодня такая же, как энтропия аналогичной области в предыдущем цикле, но энтропия Вселенной в целом возросла — просто потому, что ее объем стал больше. С течением времени как энтропия, так и объем неограниченно растут. Состояние максимальной энтропии никогда не достигается, поскольку максимальной энтропии не существует.
Таким образом, есть две возможных модели вечной вселенной без начала: одна основана на вечной инфляции, а другая — на циклической эволюции. Но, оказывается, ни одна из них не обеспечивает полного описания Вселенной.
Пространство де Ситтера
Когда физик хочет понять какое-то явление, первым делом он максимально его упрощает, отбрасывая все, кроме самого существенного. В случае вечной инфляции можно отбросить островные вселенные, сохранив только море инфляции. Кроме того, можно предположить, что Вселенная однородна и изотропна, как в моделях Фридмана. С этими упрощениями нетрудно решить уравнения Эйнштейна для инфлирующей Вселенной.
Решение имеет геометрию трехмерной сферы, которая сжимается от очень большого радиуса в далеком прошлом. Сжатие замедляется отталкивающей гравитацией ложного вакуума, пока сфера на мгновение не остановится и не начнет затем расширяться. Силы гравитации теперь действуют в направлении движения, так что сфера расширяется с ускорением. Ее радиус растет экспоненциально, а время его удвоения определяется плотностью энергии ложного вакуума.
Это решение было найдено вскоре после создания теории относительности; оно называется пространством-временем де Ситтера в честь голландского астронома Виллема де Ситтера, который открыл его в 1917 году. Это пространство-время изображено на рисунке 16.1. Инфляция начинается в пространстве-времени де Ситтера лишь после того, как сферическая вселенная достигнет своего минимального радиуса. Но когда она начинается, экспоненциальное расширение продолжается бесконечно, так что инфляция вечна в будущем.
Рис. 16.1. Пространство де Ситтера без двух из трех пространственных измерений. Горизонтальные срезы пространства-времени дают "стоп-кадры" вселенной в различные моменты времени. В четырехмерном пространстве-времени эти срезы будут трехмерными сферами.
Если допустить образование островных вселенных в сжимающейся части пространства-времени, они бы сталкивались и сливались. Острова тогда быстро заполнили бы все пространство, ложный вакуум полностью исчез, а Вселенная продолжила бы коллапсировать вплоть до большого сжатия. Таким образом, инфляцию нельзя бесконечно продолжить в прошлое. У нее должно быть какое-то начало.
Следует, однако, иметь в виду, что данный вывод основан на максимально упрощенной модели инфляции, в которой рассматривается однородная и изотропная вселенная. В действительности Вселенная на масштабах, значительно превышающих со временный горизонт, может быть очень неоднородной и анизотропной. Не окажется ли так, что фаза сжатия пространства де Ситтера есть побочный эффект наших упрощений? Нельзя ли в пространстве-времени более общего вида обойтись без начала?
За пределами неразумных сомнений
Эти сомнения удалось рассеять лишь недавно в статье, которую я написал в соавторстве с Эрвиндом Бордом (Arvind Borde) из Саутгемптонского колледжа и Аланом Гутом. Теорема, доказанная в этой статье, на удивление проста. Ее доказательство не выходит за рамки школьной математики, но для проблемы начала Вселенной она имеет важные следствия.
В статье мы исследовали, как выглядит расширяющаяся вселенная с точки зрения разных наблюдателей. Мы рассматривали воображаемых наблюдателей, движущихся сквозь вселенную под действием гравитации и инерции и регистрирующих, что они видят. Если вселенная не имеет начала, то истории всех таких наблюдателей должны уходить в бесконечное прошлое. Мы показали, что такое предположение приводит к противоречию.
Чтобы сделать разговор более конкретным, предположим, что в каждой галактике нашей области вселенной есть наблюдатель. Поскольку вселенная расширяется, каждый такой наблюдатель будет видеть, что остальные удаляются от него. В некоторых областях пространства и времени может не быть галактик, но мы все равно мысленно "рассеем" наблюдателей по всей вселенной таким образом, чтобы они удалялись друг от друга. Будем называть этих наблюдателей "зрителями".
Введем теперь другого наблюдателя, который движется относительно зрителей. Назовем его космическим путешественником. На протяжении целой вечности он летит по инерции, выключив двигатели своего космического корабля. Когда он пролетает мимо зрителей, те регистрируют его скорость.
Поскольку наблюдатели разлетаются, скорость космического путешественника относительно каждого следующего зрителя будет меньше, чем относительно предыдущего. Предположим, например, что путешественник только что пронесся мимо Земли со скоростью 100 000 километров в секунду и сейчас движется в направлении далекой галактики примерно в миллиарде световых лет от нас. Эта галактика улетает от нас со скоростью 20 000 километров в секунду, так что, когда путешественник доберется до нее, тамошние наблюдатели увидят, что он движется со скоростью 80 000 километров в секунду. Если в будущем скорость космического путешественника относительно зрителей становится все меньше и меньше, это значит, что по мере углубления в историю его скорость должна становиться все больше и больше. В пределе она должна стать сколь угодно близкой к скорости света.
Ключевая идея нашей с Бордом и Гутом статьи состоит в том, что по мере движения назад, к бесконечному прошлому, время, прошедшее по часам космического путешественника, остается конечным. Все дело в том, что, согласно эйнштейновской теории относительности, движущиеся часы замедляются, и чем ближе вы к скорости света, тем медленнее они идут. Чем дальше мы уходим назад во времени, тем ближе космический путешественник к скорости света, а его часы практически замирают. Так это выглядит для зрителей. Но сам космический путешественник не замечает ничего необычного. То, что кажется зрителям застывшим мгновением, растянувшимся на целую вечность, для него — обычный момент времени, которому предшествуют другие моменты. Как и истории зрителей, история космического путешественника должна продолжаться в бесконечное прошлое.
Сам факт конечности времени, прошедшего по часам космического путешественника, указывает на то, что мы имеем дело с неполной его историей. Это означает, что часть прошлой истории вселенной отсутствует; она не включена в нашу модель. Таким образом, предположение, что все пространство-время можно покрыть расширяющейся пылью из наблюдателей, приводит к противоречию и поэтому не может быть истинным.
Замечательная особенность этой теоремы — широта ее охвата. Мы не использовали никаких допущений о материальном наполнении вселенной. Мы даже не предполагали, что гравитация описывается уравнениями Эйнштейна. Так что, если потребуется внести изменения в теорию гравитации, наши выводы не изменятся. Единственное сделанное нами предположение состояло в том, что скорость расширения вселенной никогда не была ниже некоторого ненулевого значения — неважно, насколько малого. Это предположение, очевидно, должно выполняться в инфлирующей ложном вакууме. Отсюда вытекает невозможность вечной в прошлом инфляции, не имеющей начала.
А что же с циклической вселенной? В ней есть чередующиеся периоды расширения и сжатия. Помогут ли они этой вселенной вырваться из когтей данной теоремы? Как выяснилось, ответ будет отрицательным. Существенная особенность циклического сценария, позволяющая обойти проблему тепловой смерти, состоит в том, что объем вселенной с каждым циклом возрастает, так что в среднем вселенная расширяется. В нашей статье было показано, что в результате такого расширения скорость космического путешественника в среднем возрастает по мере движения назад во времени и по-прежнему в пределе стремится к скорости света. Так что выводы остаются неизменными.
Говорят, что аргумент — это то, что убеждает разумного человека, а доказательство — то, что способно убедить даже неразумного. После публикации данного доказательства космологи не могли больше прятаться за возможностью вечной в прошлом Вселенной. Выхода не было: пришлось лицом к лицу встретиться с проблемой космического начала.
Совместная с Аланом Гутом работа над этой статьей принесла мне незабываемые впечатления. Идея доказательства возникла в переписке по электронной почте между мной, Аланом и Арвиндом, а детали были доработаны за два часа, проведенных у доски, когда в августе 2001 года мы втроем встретились в моем кабинете в Тафтсе. Примерно через месяц мы написали статью и подали ее в Physical Review Letters. Я был поражен. Что случилось с Аланом и его легендарной склонностью все откладывать? Но в итоге он меня не разочаровал. Через несколько месяцев редактор прислал нам отзывы рецензентов, которые просили прояснить некоторые моменты в доказательстве. И вот тогда старый добрый Алан показал все, на что способен. Все с большими и большими интервалами от него приходили электронные письма с заголовками "Погряз в делах" или "Пока ничего не сделал". Когда он нашел немного времени для работы над статьей, то, похоже, потратил большую его часть на выяснение вопросов вроде того, как следует благодарить "анонимного рецензента" за его или ее замечания. Он дал подробный разбор всех "за" и "против" каждого варианта. Видимо, Алан подозревал, что редактирование статьи несколько затянулось, и в какой-то момент написал: "Я должен поблагодарить вас, ребята, что вы меня не пристрелили". Справедливости ради надо признать, что он потратил некоторое время и на более существенные вопросы, так что затянувшийся процесс редактирования статьи привел к значительным улучшениям. Она наконец была опубликована в апреле 2003 года.
Доказательство бытия Божия?
Теологи весьма благосклонны к любым свидетельствам существования у Вселенной начала, считая их аргументами в пользу бытия Божия. Накопление данных о Большом взрыве в 1950-х годах вызвало энтузиазм в теологических кругах и среди религиозно настроенных ученых. "Что касается первопричины Вселенной, — писал британский физик Эдвард Милн, — то в контексте ее расширения окончательное решение, конечно, за читателем, однако наша картина будет неполна без Него". Теория Большого взрыва даже снискала официальное одобрение церкви. В своем послании к Папской академии наук в 1951 году папа Пий XII писал, что "получены... надежно подтвержденные результаты относительно эпохи, когда Космос вышел из рук Творца. Значит, Творение имело место. Значит, существует Творец. Значит, существует Бог!"
В силу той же причины, которая вызвала восторгу папы, естественный инстинкт большинства ученых отвергает идею наличия у Космоса начала. "Чтобы отрицать бесконечную длительность времени, — писал нобелевский лауреат, немецкий химик Вальтер Нернст, — придется отбросить самые основания науки". Начало Вселенной слишком похоже на божественное вмешательство; кажется невозможным описать его научно. Это единственная мысль, на которой, по-видимому, сходятся ученые и теологи.
Итак, что же нам делать с доказательством неизбежности начала? Доказывает ли оно существование Бога? Такой взгляд был бы слишком упрощенным. Всякий, кто пытается понять происхождение Вселенной, должен быть готов встретиться с логическими парадоксами. В этом отношении теорема, которую мы с коллегами доказали, не дает теологам существенных преимуществ перед учеными. Как следует из приведенного выше замечания Джинасены, религия не защищена от парадоксов творения.
Впрочем, и ученые, возможно, слишком торопятся признавать, что начало космоса нельзя описать с чисто научных позиций. Да, действительно, трудно понять, как это можно было бы сделать. Но кажущаяся невозможность часто отражает лишь ограниченность нашего воображения.