3.5. Разделительно-категорический и чисто разделительный силлогизмы
Умозаключения, которые содержат в себе разделительные, (дизъюнктивные) суждения называются разделительными. В мышлении и речи часто используется разделительно-категорический силлогизм, в котором, как явствует из названия, первая посылка представляет собой разделительное (дизъюнктивное) суждение, а вторая посылка – простое (категорическое). Например:
Учебное заведение может быть начальным, или средним, или высшим. МГУ является высшим учебным заведением. МГУ – это не начальное и не среднее учебное заведение.
Разделительно-категорический силлогизм имеет два модуса:
1. Утверждающе-отрицающий модус, у которого первая посылка представляет собой строгую дизъюнкцию нескольких вариантов чего-либо, вторая утверждает один из них, а вывод отрицает все остальные (таким образом, рассуждение движется от утверждения к отрицанию). Например:
Леса бывают хвойными, или лиственными, или смешанными. Этот лес хвойный. Этот лес не лиственный и не смешанный.
С помощью условных обозначений логических союзов можно представить форму данного силлогизма в виде следующей записи:
((
a b c) ∧
a)→(¬
b ∧ ¬
c), где (
a b c) – это первая посылка в виде строгой дизъюнкции трёх простых суждений;
a – это вторая посылка в виде утверждения одного из них; ((
a b c) ∧
a) – это две посылки силлогизма, соединённые знаком конъюнкции; (¬
b ∧ ¬
c) – это вывод силлогизма в виде конъюнкции отрицаний двух оставшихся простых суждений, входивших в первую посылку; знак импликации «→» показывает, что из посылок следует вывод.
2. Отрицающе-утверждающий модус, у которого первая посылка представляет собой строгую дизъюнкцию нескольких вариантов чего-либо, вторая отрицает все данные варианты, кроме одного, а вывод утверждает один оставшийся вариант (таким образом, рассуждение движется от отрицания к утверждению).
Например:
Люди бывают европеоидами, или монголоидами, или негроидами. Этот человек не монголоид и не негроид. Этот человек является европеоидом.
С помощью условных обозначений логических союзов можно представить форму данного силлогизма в виде следующей записи:
((
a b c) ∧ (¬
b ∧ ¬
c)) →
a, где (
a b c) – это первая посылка в виде строгой дизъюнкции трёх простых суждений; (¬
b ∧¬
c) – это вторая посылка в виде конъюнкции отрицаний двух из них;
(
a b c) ∧ (¬
b ∧¬
c) – это две посылки силлогизма, соединённые знаком конъюнкции;
a – это вывод силлогизма в виде утверждения третьего простого суждения, входившего в первую посылку; и наконец, импликацией объединяются посылки и вывод силлогизма.
Первая посылка разделительно-категорического силлогизма является строгой дизъюнкцией, т. е. представляет собой уже знакомую нам логическую операцию деления понятия. Поэтому неудивительно, что правила этого силлогизма повторяют известные нам правила деления понятия:
1. Деление в первой посылке должно проводиться по одному основанию. Например:
Транспорт бывает наземным, или подземным, или водным, или воздушным, или общественным. Пригородные электропоезда – это общественный транспорт. Пригородные электропоезда – это не наземный, не подземный, не водный и не воздушный транспорт.
Силлогизм построен по утверждающе-отрицающему модусу: в первой посылке представлено несколько вариантов, во второй посылке один из них утверждается, в силу чего в выводе отрицаются все остальные. Однако из двух истинных посылок вытекает ложный вывод. Почему так получается? Потому что в первой посылке деление проводилось по двум разным основаниям: в какой природной среде передвигается транспорт и кому он принадлежит. Подмена основания деления в первой посылке разделительно-категорического силлогизма приводит к ложному выводу.
2. Деление в первой посылке должно быть полным. Например:
Математические действия бывают сложением, или вычитанием, или умножением, или делением. Логарифмирование – это не сложение, не вычитание, не умножение и не деление. Логарифмирование – это не математическое действие.
В силлогизме неполное деление в первой посылке обусловливает ложный вывод, вытекающий из истинных посылок.
3. Результаты деления в первой посылке не должны пересекаться, или дизъюнкция должна быть строгой. Например:
Страны мира бывают северными, или южными, или западными, или восточными. Канада – это северная страна. Канада – это не южная, не западная и не восточная страна.
В силлогизме вывод является ложным, т. к. Канада в такой же степени северная страна, в какой и западная. Ложный вывод при истинных посылках объясняется в данном случае пересечением результатов деления в первой посылке, или, что одно и то же, – нестрогой дизъюнкцией. Следует отметить, что нестрогая дизъюнкция в разделительно-категорическом силлогизме допустима в том случае, когда он построен по отрицающе-утверждающему модусу. Например:
Он силён от природы или же постоянно занимается спортом. Он не является сильным от природы. Он постоянно занимается спортом.
В силлогизме нет ошибки, несмотря на то, что дизъюнкция в первой посылке была нестрогой. Таким образом, рассматриваемое правило безоговорочно действует только для утверждающе-отрицающего модуса разделительно-категорического силлогизма.
4. Деление в первой посылке должно быть последовательным. Например:
Предложения бывают простыми, или сложными, или сложносочинёнными.
Это предложение сложносочинённое. Это предложение не простое и не сложное.
В силлогизме ложный вывод следует из истинных посылок по той причине, что в первой посылке был допущен скачок в делении.
Разделительно-категорический силлогизм в логике часто называют просто разделительно-категорическим умозаключением. Помимо него существует также чисто разделительный силлогизм (чисто разделительное умозаключение), обе посылки и вывод которого являются разделительными (дизъюнктивными) суждениями.
Например:
Зеркала бывают плоскими или сферическими. Сферические зеркала бывают вогнутыми или выпуклыми. Зеркала бывают плоскими, или вогнутыми, или выпуклыми.
Форму приведённого чисто разделительного силлогизма можно представить следующим образом: ((
a b) ∧ (
b1 b2)) → (
a b1 b2), где (
a b) – первая посылка; (
b1 b2) – вторая посылка; (
a b1 b2 ) – вывод.
Проверьте себя:
1. Что представляют собой разделительные умозаключения?
2. Какие модусы имеет разделительно-категорический силлогизм?
Приведите по три примера для каждого модуса, изобразив их форму с помощью условных логических обозначений.
3. Каковы правила разделительно-категорического силлогизма?
Какие ошибки возникают при их нарушении? В каком случае дизъюнкция в разделительно-категорическом силлогизме может быть нестрогой? Придумайте по одному примеру для каждой ошибки, возникающей при нарушении соответствующего правила.
4. Чем отличается чисто разделительный силлогизм от разделительно-категорического силлогизма? Приведите два примера чисто разделительного силлогизма.
5. Допущены ли ошибки (и какие) в следующих разделительно-категорических силлогизмах:
1. Четырёхугольники бывают квадратами, или ромбами, или трапециями. Эта фигура – не ромб и не трапеция. Эта фигура – квадрат.
2. Отбор в живой природе бывает искусственным или естественным. Данный отбор не является искусственным. Данный отбор является естественным.
3. Люди бывают талантливыми, или бесталанными, или упрямыми.
Он является упрямым человеком.
Он не талантлив и не бесталанен.
4. Суждения бывают утвердительными или отрицательными.
Это суждение утвердительное.
Это суждение не отрицательное.
5. Учащиеся бывают отличниками или двоечниками.
Мой товарищ не отличник.
Мой товарищ – двоечник.