Модели и действительность
МОДЕЛИРОВАНИЕ – это подражание Природе, учитывающее немногие ее свойства. Почему только немногие? Из-за нашего неумения? Нет. Прежде всего потому, что мы должны защититься от избытка информации. Такой избыток, правда, может означать и ее недоступность. Художник пишет картины, но, хотя у него есть рот и мы могли бы с ним поговорить, мы не узнаем, как он создает свои произведения. О том, что происходит в его мозгу, когда он пишет картину, ему самому неизвестно. Информация об этом находится в его голове, но нам она недоступна. Моделируя, следует упрощать: машина, которая может написать весьма скромную картину, рассказала бы нам о материальных, то есть мозговых основах живописи больше, чем такая совершенная «модель» художника, какой является его брат-близнец. Практика моделирования предполагает учет некоторых переменных и отказ от других. Модель и оригинал были бы тождественны, если бы процессы, происходящие в них, совпадали. Этого не происходит. Результаты развития модели отличаются от действительного развития. На это различие могут влиять три фактора: упрощенность модели по сравнению с оригиналом, свойства модели, чуждые оригиналу, и, наконец, неопределенность самого оригинала. Когда мы имитируем живой мозг с помощью электронного, мы кроме отображения сети нервных клеток (которое осуществляется с помощью некоторой электрической схемы) должны учесть еще и такое явление, как память. Живой мозг не имеет отдельного резервуара памяти. Настоящие нейроны универсальны – память «рассеяна» по всему мозгу. Наша электросхема таких способностей не проявляет. Поэтому мы должны подключить к электронному мозгу специальные резервуары памяти (например, ферромагнитной). Кроме того, настоящий мозг отличается еще некоторой «случайностью» поведения, непредсказуемостью действий, а электронная схема – нет. Как поступает кибернетик? Он встраивает в модель «генератор акцидентальности», который, включаясь, посылает случайно выбранные сигналы в глубь схемы. Такая «акцидентальность» была заранее предусмотрена: соответствующее дополнительное устройство использует таблицы случайных чисел или что-либо подобное.
Итак, мы получили нечто вроде аналога «непредсказуемости», «свободной воли». После всего этого сходство параметров на выходах обеих систем, нервной и электронной, возросло. Но сходство возросло только относительно пар состояний «вход» – «выход». Сходство вовсе не увеличивается, а напротив, уменьшается, если кроме динамической связи «вход» – «выход» принять во внимание всю структуру обеих систем (или, иначе говоря, если учесть большее число переменных). У электронного мозга, правда, есть теперь «воля» и «память», но у настоящего мозга нет ведь ни генератора акцидентальности, ни отдельного резервуара памяти. Поэтому чем больше модель сближается с оригиналом в рамках некоторых имитируемых переменных, тем больше она отходит от него в области других переменных. Если бы мы захотели учесть еще переменную возбудимость нейронов, обусловленную существованием порога возбудимости (причем организм реализует это одним лишь биохимизмом реакций), то должны были бы каждый переключающий элемент («нейристор»), то есть эквивалент нейрона, снабдить особой электрической схемой и т. д. Итак, переменные, входящие в модель, но не обнаруживаемые в самом моделируемом явлении, мы считаем несущественными. Это частный случай общего метода сбора информации, при котором всегда производится предварительный выбор. Например, для лица, которое ведет обычный разговор, потрескивания в телефонной трубке – это «шум», но для инженера-связиста, проверяющего линию, именно этот шум и может быть информацией (этот пример заимствован у Эшби).
Поэтому, если бы мы захотели промоделировать какое-либо явление с учетом всех его переменных (предположим на время, что это возможно), нам пришлось бы создать систему, обогащенную по сравнению с оригиналом теми дополнительными переменными, которые свойственны самой моделирующей системе, но которых нет у оригинала. Вот почему применение цифрового моделирования плодотворно до тех пор, пока количество переменных мало. При увеличении их числа этот метод быстро достигает предела своей применимости. Поэтому такой способ моделирования должен уступить место другому.
Теоретически наиболее экономично моделировать одно явление другим таким же явлением. Но возможно ли это? Чтобы промоделировать человека, его нужно, по-видимому, воссоздать; чтобы промоделировать биологическую эволюцию, нужно повторить ее на такой же планете, как Земля. Наисовершеннейшей моделью яблока будет другое яблоко, а Космоса – другой Космос.
Это смахивает на reductio ad absurdum имитологической практики, однако не будем спешить с таким приговором.
Ключевой вопрос звучит так: существует ли нечто такое, что, не будучи верным (модельным) повторением явления, содержало бы больше информации, чем само это явление? Ну конечно же, существует. Это – научная теория. Она охватывает целый класс явлений; она говорит о каждом из них и одновременно о всех вместе. Безусловно, теория не учитывает многих переменных данного явления, но они для достижения поставленной цели несущественны.
Здесь, однако, заключена новая трудность: давайте поставим вопрос, содержит ли теория лишь ту информацию, которую мы в нее сами вложили (создавая ее на основе фактов, почерпнутых из наблюдений, и на основе других теорий, например теории измерений), или же она может содержать больше информации? Это невозможно? А ведь на основе теории физического вакуума квантовая теория поля предсказала ряд явлений. Кроме теории бета-распада отсюда родились результаты в теории сверхтекучести (жидкого гелия), а также теории твердого тела. Если в общем случае теория должна была предвидеть явление X, а потом оказалось, что из нее дедуктивно выводимы еще и другие явления, о существовании которых мы до сих пор ничего не знали, то откуда же взялась в ней эта «дополнительная» информация?
Она появилась потому, что изменения в мире, в общем-то говоря, взаимосвязаны. Благодаря этой взаимной связи мы «додумались» до одного, а оно «потянуло за собой» другое.
Это звучит убедительно, но как же обстоит дело с балансом информации? Мы вложили в теорию х битов информации, а получаем х+п? Не значит ли это, что достаточно сложная система (такая, как мозг) может создавать дополнительную информацию – большую по сравнению с имевшейся в предыдущий момент, причем без притока информации извне? Но ведь это был бы подлинный информационный perpetuum mobile?
К сожалению, этого нельзя решить, опираясь на современную теорию информации. Количество информации тем больше, чем меньшей была вероятность прихода определенного сигнала. Поэтому если бы поступило сообщение, что звезды состоят из швейцарского сыра, количество информации было бы попросту огромным, ибо получение такого сигнала чрезвычайно маловероятно. Но тут специалист справедливо упрекнет, что мы перепутали два вида информации, селективную, то есть определяемую выбором из множества возможных сигналов (звезды состоят из водорода, из энтелехии, из собачатины, из сыра и т. д.), которая не имеет ничего общего с истинностью, то есть с соответствием информации определенному явлению, и структурную информацию, которая является отображением некоторой ситуации. Сенсационное сообщение о том, что в звездах идет процесс ферментации сыра, содержит много селективной информации и нуль структурной, так как неверно, что звезды состоят из сыра. Прекрасно. А теперь возьмем теорию физического вакуума. Из нее следует, что бета-распад происходит так-то и так-то (что истинно) и что заряд электрона бесконечно велик (что ложно). Первый результат, однако, настолько ценен для физика, что с лихвой окупает ложность второго. Теория информации остается равнодушной к этому выбору физика, поскольку она не учитывает ценности информации, в частности информации в ее структурном виде. Кроме того, никакая теория не существует «сама по себе», не является «суверенной»; всякая теория частично вытекает из других, а частично с ними объединяется. Следовательно, количество содержащейся в ней информации очень трудно измерить, потому что, например, информация, содержащаяся в знаменитой формуле E = mc2 , «попадает» в нее из огромного количества других формул и теорий.
Может быть, однако, теории и модели явлений нужны лишь сегодня? Может быть, мудрец с другой планеты в ответ молчаливо вручил бы нам обрывок лежащей на земле старой подметки, давая этим понять, что всю истину о Вселенной можно вычитать из этого кусочка материи?
Остановимся ненадолго на этой старой подметке. С этой шуткой могут быть связаны забавные последствия. Возьмем уравнение 4 + х = 7. Малосообразительный ученик не знает, как добраться до значения х, хотя результат уже «сидит» в уравнении, только он скрыт от затянутых пеленой глаз и «сам» может появиться лишь после элементарного преобразования. Спросим тогда, как и надлежит ересиархам, не то же ли самое происходит и с Природой. Не «вписаны» ли в материю все ее потенциальные преобразования (то есть возможность создания звезд, квантолетов, швейных машин, роз, шелкопрядов и комет)? В таком случае, взяв основной кирпичик Природы – атом водорода, – можно бы из него «дедуктивно» вывести все эти возможности (начиная со скромной возможности синтезировать сто химических элементов и кончая возможностью создания систем в триллион раз более одухотворенных, чем человек). А также вывести то, что нереализуемо (сладкую поваренную соль NaCl, звезды диаметром в квадрильон миль и т. д.). С этой точки зрения в материю заложены все ее возможности и невозможности (запреты), только мы не умеем расшифровать ее «код». Материя в этом случае была бы, собственно говоря, подобна математической задаче, а мы уподобились бы тому неспособному ученику, который не может добыть из нее «всю информацию», хотя она там и содержится. То, что мы здесь говорили, есть попросту тавтологическая онтология...