153
С современной точки зрения все три приведенные автором примера неверно сформулированы и не несут в себе противоречия. Квантование пространства ни в коем случае не противоречит основаниям классической квантовой механики (точнее было бы сказать «квантовой теории поля»), другой вопрос, что построение квантовой механики в дискретном (квантованном) пространстве наталкивается на ряд математических трудностей. Проблема «скрытых параметров» была сформулирована на заре квантовой механики. Суть ее в гипотетическом существовании у частицы неких характеристик, не измеримых на макроуровне, но существенно влияющих на ее поведение на микроуровне. Иными словами, предполагалось, что необходимость в квантовомеханическом описании мира возникает лишь постольку, поскольку мы не можем учесть все параметры, оказывающие влияние на движение, в том числе – скрытые. Если бы, однако, это удалось, мы вернулись бы к классическому пониманию движения. То есть вероятностный квантовый подход связан не со свойствами реального мира, но лишь описывает степень нашего незнания. Первоначально проблема «скрытых параметров» мыслилась как чисто философская, позднее удалось доказать, что «чистая квантовая механика» и «квантовая механика, основанная на модели „скрытых параметров“, различаются предсказаниями некоторых очень тонких эффектов. В 1980-е годы удалось поставить решающий эксперимент, который точно доказал, что модель „скрытых параметров“ ошибочна. Сейчас эта концепция относится к истории науки.
Последний приведенный С. Лемом пример «ошибочен вдвойне». Во-первых, принцип постоянства скорости света был установлен для макромира и, строго говоря, он и не обязан выполняться в микромире (подобно принципу возрастания энтропии). А во-вторых, квантовомеханические процессы согласуются с эйнштейновской концепцией пространства-времени, то есть принцип постоянства скорости света в микромире выполняется. (Прим. ред.)